Телевизор в качестве осциллографа. Телевизионный осциллограф с Телевизионный осциллограф

Приставка, схема которой показана на рис. 1, превращает любой телевизор в осциллограф с большим экраном. На нем можно наблюдать НЧ колебания, а с помощью генератора качающейся частоты (ГКЧ) визуально настраивать усилители ПЧ радиоприемников.

Приставку можно рассматривать как миниатюрный телевизионный передатчик. Несмотря на относительную простоту схемы, в этом передатчике формируется полный телевизионный сигнал, который отличается от стандартного сигнала только отсутствием уравнивающих импульсов.

Кадровые синхроимпульсы формируются из переменного синусоидального напряжения усилителем-ограничителем Т1, дифференцирующей цепью R8С4 и пороговым усилителем Т4. Их длительность около 1,9 мс.

Блокинг-генератор на транзисторе Т5 генерирует строчные синхроимпульсы. Это не основные импульсы блокинг-генератора, а выбросы коллекторного напряжения, возникающие сразу вслед за основными. Между коллекторами транзисторов Т4 и Т5 включен разделительный диод Д3.

В момент генерации основного импульса коллектор транзистора Т4 замыкается на шасси через открытый транзистор Т5 и диод Д3. Вследствие этого в кадровых синхроимпульсах появляются врезки, которые, как и требуется, предшествуют строчным синхроимпульсам. Обмотки трансформатора Тр1 блокинг-генератора намотаны на тороидальном сердечнике из оксифера (ц = 1000).

Внешний диаметр сердечника 10 мм, толщина 2 мм. Обмотки I и III содержат до 100 витков, а II - 30 витков провода ПЭЛШО 0,1.

В начале периода строчной развертки импульс напряжения блокинг-генератора быстро заряжает конденсатор С5 через диод Д2. В течение остальной части периода он медленно разряжается через резистор R6. Возникающее при этом пилообразное напряжение поступает на базу транзистора Т2.

Здесь оно складывается с осциллографируемым напряжением.

Рис. 1. Приставка, превращающая телевизор в осциллограф: а - структурная схема: А- блок формирования импульсов кадровой синхронизации; В - генератор импульсов синхронизации по строкам; С - блокинг-генератор; о-блок, превращающий напряжение в видеоимпульсы; Е - генератор УКВ с амплитудной модуляцией; «Вход» - зажимы, к которым подводится исследуемое напряжение: б - принципиальная электрическая схема.

Трехкаскадный усилитель (Т2, ТЗ, Т6) из-за большого козффициента усиления (50 000-100 000) работает практически в релейном режиме, характеризующемся определенным порогом срабатывания.

Параметры приставки выбраны такими, что при отсутствии исследуемого напряжения осевая линия находится в центре экрана. При необходимости изображение на экране можно сдвинуть в ту или другую сторону изменением сопротивления резистора R3.

Для повышения четкости изображения линии на экране телевизора усилитель (Т2, Т3, Т6) охвачен положительной обратной связью с коллектора транзистора Т3 на базу транзистора Т2 через конденсатор С6. Это значительно повышает усиление в области высоких частот н, следовательно, увеличивает крутизну фронта выходных импульсов. Визуально это проявляется в повышенной резкости перехода от белого к черному.

Кадровые, строчные и видеоимпульсы складываются на входе эмиттерного повторителя T7, который является модуляционным усилителем УКВ генератора Т8. Последний собран по схеме емкостной трехточки. Частота генерации должна быть выбрана равной несущей частоте изображения свободного телевизионного канала.

В противном случае приставка может создавать помехи работе соседних телевизоров. Требуемых частот генерации можно добиться, подбирая число витков катушки L1. При настройке на второй телевизионный канал (59, 25 МГц) катушка L1 содержит 5 витков провода ПЭВ 0,6, диаметр катушки 9 мм.

Модулированное ВЧ напряжение поступает на выход приставки через делитель R18 - R19, который понижает напряжение до 3 мВ во избежание перегрузки ВЧ-тракта телевизора.

Выход приставки коаксиальным кабелем или скрученным двойным проводом соединяют с антенным входом телевизора.

Конструкция и налаживание. Все детали приставки, за исключением УКВ генератора, можно расположить на монтажной плате в произвольном порядке. Детали, относящиеся к УКВ генератору (С11 - С15, L1, Т8), должны иметь короткие выводы, соединяться между собой короткими проводниками, и, кроме того, их следует сгруппировать в одном месте.

Никакой экранировки приставки не требуется. После ее включения необходимо, как обычно, настроить телевизор с помощью регулировочных ручек (частота кадров, частота строк, контрастность).

Если частота импульсов блокинг-генератора приставки не лежит в диапазоне регулировки частоты строк телевизора, необходимо ввести ее в этот диапазон, изменяя в небольших пределах сопротивление резистора R14. Следует отметить, что синхронизация разверток телевизора от приставки обычно получается очень устойчивой, поэтому плохая синхронизация при налаживании приставки указывает на какую-нибудь ошибку в монтаже.

Чтобы добиться точной настройки УКВ генератора приставки на выбранный телевизионный канал, приходится растягивать или сжимать витки обмотки катушки L1, т. е. менять шаг намотки. При правильной настройке линия на экране резко очерчена.

Параметры приставки подобраны так, что наибольший размах изображения на экране телевизора соответствует входному напряжению около 0,3 В. Чувствительность приставки можно регулировать, изменяя сопротивление резистора Я2.

Для проверки чувствительности приставки на ее вход подают переменное напряжение известной величины либо от источника питания напряжением 6 В, частотой 50 Гц через делитель, либо от звукового генератора.

Входное сопротивление и чувствительность приставки при желании можно значительно повысить, подключив к ней обычный усилитель НЧ с эмиттерным повторителем на входе.

Литература: В.Г.Бастанов. 300 практических советов, 1986г.

Блок каналов Y (VERTICAL) содержит входные разъемы CH1 и CH2, входные переключатели AC/DC (закрытый/открытый вход), кнопки GND – заземление входа. Коэффициент отклонения устанавливается калиброванными аттенюаторами (VOLTS/DIV), а также некалиброванной плавной регулировкой VAR. Вертикальное смещение осциллограммы регулируется в каждом канале плавно ручкой POSITION. Осциллограф обеспечивает следующие режимы работы коммутатора каналов ALT/CHOP/ADD – поочередное (на каждый ход развертки) или прерывистое переключение каналов (с частотой 250 кГц). Режим ADD обеспечивает сложение сигналов каналов CH1 + CH2.

Рис. 2.2 . Обозначения органов управления осциллографа GOS-6200

Канал X осциллографа (HORIZONTAL) содержит два генератора: основной (MAIN) и задержанной разверток (DELAY). Коэффициент разверток устанавливается дискретно (TIME/DIV). При необходимости используют некалиброванную плавную регулировку при включенном режиме VAR. Растяжка развертки включается кнопкой 10 MAG. Горизонтальное положение осциллограммы регулируется ручкой POSITION. Режим работы канала Х переключается кнопкой MAIN/ALT/DELAY. При этом реализуются следующие режимы работы канала X :

1. Только развертка MAIN.

2. Совмещение осциллограмм разверток с выделением области действия задержанной развертки.

11 -

3. Только задержанная развертка, запускаемая от основной развертки с плавно регулируемой задержкой (ручкой DELAY TIME).

Отключение развертки осуществляется кнопкой режима X–Y .

Блок синхронизации и запуска (TRIGGER) позволяет выбрать источник сигнала синхронизации (SOURCE), режим работы генератора развертки (MODE) – автоколебательный (ATO), ждущий – NORM и с запуском от видеосигнала (TV). Переключатель COUPLING служит для установки режима обработки сигнала синхронизации.

Функция выключателя SLOPE – это выбор полярности сигнала синхронизации: (+) – синхронизация по возрастанию сигнала (запуск по фронту), (–) – по убыванию (запуск по срезу импульса). Уровень срабатывания устройства синхронизации и запуска регулируется вручную ручкой LEVEL.

В осциллографе предусмотрен режим задержки синхронизации и запуска. С помощью ручки HO (совмещенной с регулировкой DELAY TIME) можно вручную увеличивать время блокировки напряжения развертки t бл . Это позволяет повысить стабильность работы блока синхронизации в случае, когда на периоде сигнала возможна выработка более чем одного сигнала запуска. Нормальное положение этой регулировки – 0 %.

Измерительный блок (MEAS’MT) включает и выключает режим курсорных измерений, переключает вид курсоров. В обычном режиме кнопка FUNC служит для переключения функций измерения параметров сигнала – частоты, периода, длительности и скважности.

Блок установок (SETUPS) позволяет запомнить в памяти состояние органов управления осциллографа и – при необходимости – восстановить предыдущее состояние прибора.

Амплитудные и временные параметры стандартного ТВ-видеосигнала

В лабораторной работе в качестве объекта исследования используется стандартный телевизионный видеосигнал. Параметры этого сигнала для систем вещательного телевидения – период и длительность синхроимпульсов, амплитуда и форма – строго стандартизированы в ГОСТ 7845–92. В табл. 2.2 приведены стандартные параметры видеосигнала отечественного телевидения.

Телевизионный видеосигнал состоит из сигналов изображения, а также строчных и кадровых гасящих (бланкирующих) и синхронизирующих импульсов. В видеосигнале различают:

активный интервал, в течение которого передается изображение;

пассивный интервал, в котором передаются гасящие и синхронизирующие импульсы, сигналы опознавания цвета, сигналы телетекста, тест-сигналы изображения и пр.

Таблица 2.2

Стандартные параметры видеосигнала

Величина

Значение

Число строк

Частота полей, Гц

Частота строк, Гц

Длительность строки, мкс

Длительность синхроимпульса, мкс

Длительность фронта гасящего импульса строк, мкс

Длительность гасящего строчного импульса, мкс

Длительность полного кадра, мс

Интервал между фронтом строчного и гасящего импульса, мкс

Длительность кадрового гасящего импульса (длительность строки)

Сигнал изображения представляет собой напряжение, значение которого при перемещении луча вдоль строки непрерывно изменяется в соответствии с характером передачи. Это напряжение достигает 75 % максимального значения при передаче белого и уменьшается до 10–15 % при передаче темных мест изображения. На рис. 2.3 показана форма полного видеосигнала двух смежных полей изображения для отечественного телевизионного стандарта.

Амплитудные значения сигнала изображения соответствуют мгновенной яркости передаваемого элемента изображения. Нулевым уровнем в видеосигнале считается уровень гашения. В активной части видеосигнала (выше уровня гашения) находятся уровни «белого» (порядка 70 % от амплитуды сигнала) и «черного» (порядка 5 %). Интервал между уровнем гашения и нулевым уровнем называется защитным. Амплитуда синхроимпульса составляет 30 % от размаха всего видеосигнала.

Полный видеосигнал содержит строчные и кадровые синхроимпульсы. Они передаются во время обратного хода соответственно строчной и кадровой разверток. Чтобы не нарушалась синхронизация строк во время обратного хода кадровой развертки, кадровый синхроимпульс имеет врезки строчных импульсов длительностью 4.7 мкс. При таком расположении передаваемых синхроимпульсов возможен небольшой сдвиг по фазе кадровых синхроимпульсов двух смежных полей. Это приводит к нарушению взаимного положения строк растра, выражающемуся в ухудшении вертикальной четкости изображения на экране телевизора. Для устранения отмеченного явления перед кадровым импульсом и после него передаются уравнивающие импульсы длительностью 2.35 мкс. Частота следования уравнивающих импульсов и врезок в 2 раза выше строчной частоты. При их

наличии выделенные кадровые синхроимпульсы двух смежных полей идентичны

по фазе и форме.

Четное поле

Нечетное поле текущего кадра

предыдущего кадра

Номера строк

Строчный

Передний

уравнивающий

уравнивающий

Нечетное поле текущего кадра

Четное поле текущего кадра

Кадровый гасящий импульс

Номера строк

Строчный

Кадровый

синхроимпульс

синхроимпульс

2.3. Полный видеосигнал

Для видеосигналов с упрощенной синхросмесью без врезок и уравнивающих импульсов (например, сигналов от игровых приставок, простейших видеокамер, видеотестеров – генераторов испытательных телесигналов) вертикальная четкость изображения заметно ухудшается.

Таким образом, на кадровом гасящем импульсе стандартного видеосигнала сигналы синхронизации размещаются в следующем порядке: сначала идут шесть уравнивающих импульсов с частотой повторения 31 250 Гц, за ними – шесть широких импульсов, представляющих сигнал кадровой синхронизации, затем – опять шесть уравнивающих импульсов, после чего следуют обычные строчные синхронизирующие импульсы. В связи с применением чересстрочной развертки обратный ход кадровой развертки должен происходить 2 раза в течение передачи полного кадра (сначала – после передачи нечетных, а затем – четных строк). Вначале луч отбрасывается вверх после окончания передачи целой строки, потом – после передачи половины строки. Такая последовательность обеспечивается двумя полукадровыми импульсами, отличающимися один от другого различными сдвигами во времени по отношению к передаче последнего строчного синхронизирующего импульса. В первом из них это время соответствует развертке одной

строки, а во втором – половине строки. Соответственно, оказываются сдвинутыми на половину строки и все другие синхронизирующие импульсы, насаженные на втором полукадровом бланкирующем импульсе. Такая форма сигнала позволяет получить устойчивую чересстрочную развертку, обеспечить непрерывность следования строчных синхронизирующих импульсов во время передачи кадрового бланкирующего сигнала и легко отделить сигналы синхронизации от полного телевизионного сигнала.

Продолжительность передачи импульсов определена стандартом. Время передачи одной строки составляет 64 мкс. Соответственно, продолжительность передачи строчного гасящего импульса составляет 10…11 мкс, строчного синхронизирующего импульса – 4.4…5.1 мкс, кадрового бланкирующего импульса – 1500…1600 мкс, кадрового синхронизирующего импульса – 192 мкс и, наконец, уравнивающих импульсов – 2.56 мкс. Строчные гасящие импульсы посылаются после окончания передачи каждой строки. Значение их фиксировано на уровне 75 % (уровень черного) максимальной амплитуды. Строчные синхронизирующие импульсы размещаются на строчном бланкирующем импульсе, занимая остающиеся 25 % амплитуды. Они регулируют точность начала развертки каждой следующей строки.

Кадровые гасящие импульсы посылаются по окончании развертки последней строки (низ изображения). Они запирают луч во время обратного хода, пока он движется снизу вверх, и служат «подставкой» для импульсов кадровой синхронизации, опуская их над уровнем сигнала в область «чернее черного». Кадровый синхронизирующий импульс заставляет луч совершить обратный ход снизу вверх в точном соответствии с перемещением луча в передающей трубке телевизионного центра.

Лабораторный макет состоит из аналогового телевизионного осциллографа GOS-6200, телевизионной камеры, закрепленной на станине вместе с планшетом с тестовым черно-белым изображением.

Задание и указания к выполнению работы

Подготовка осциллографа к работе

Перед работой изучите назначение органов управления осциллографа. В противном случае многое из задания к работе окажется трудновыполнимым.

Проверьте калибровку осциллографа для второго канала CH2. Для этого соедините осциллографическим щупом 1:1 клемму CAL 2V 1 кHz калибратора осциллографа с входом выбранного канала. Включите осциллограф.

Переключатель входа канала CH2 установите в положение AC – «закрытый вход», кнопку GND надо отключить. Выберите коэффициент отклонения канала

0.5 В/дел., коэффициент основной (MAIN) развертки MTB = 0.5 мс/дел. Напомним, что индикация установленных параметров и режимов осуществляется в служебных зонах экрана. Включите автоколебательный режим работы развертки (ATO), источник синхросигнала (SOURCE) – CH2, фильтр синхронизации (COUPLING) – AС, полярность синхронизации SLOPE – положительная. На экране должно появиться изображение меандра (образцового сигнала калибратора). Получите тонкую линию развертки, регулируя яркость (INTEN) и фокусировку (FOCUS) луча.

Амплитуда сигнала калибратора 2 В, поэтому при правильно откалиброванном канале Y осциллограмма должна занимать 4 дел. по вертикали. С помощью ручки HORIZONTAL POSITION совместите начало первого импульса с левой вертикальной линией шкалы. Совпадение конца пятого периода с последней правой линией шкалы говорит о том, что осциллограф откалиброван по длительности.

Если калибровка по вертикали и/или горизонтали нарушена, то осциллограф требует технического обслуживания в метрологической службе.

Измерение параметров строчного ТВ-видеосигнала

Подайте на вход канала CH1 видеосигнал от телевизионной камеры. Включите канал CH1, а второй канал выключите кратковременным нажатием кнопки

Установите на осциллографе следующие положения органов управления: переключатель входа канала CH1 - в положение DC - «открытый вход»,

кнопку GND надо отключить;

режим развертки – основной (MAIN);

режим запуска развертки (MODE) - TV, источник синхросигнала (SOURCE)

Кнопкой TV-V/TV-H установите режим синхронизации от телевизионного видеосигнала по частоте строк TV-H. Полярность синхронизации SLOPE - отрицательная. Выберите коэффициенты отклонения и развертки так, чтобы получить изображение сигналов одной или нескольких строк на экране. Из-за наличия кадровых синхроимпульсов в видеосигнале на экране могут наблюдаться дрожащие горизонтальные линии. Зарисуйте вид видеосигнала одной строки изображения.

Включите режим курсорных измерений (длительным нажатием кнопки CURSOR ON/OFF). Кратковременным нажатием кнопки FUNC выберите режим измерения длительности Д T D . Нажмите кнопку CURSOR POS и, перемещая курсоры ручками C1 и C2, измерьте период повторения строчных синхроимпульсов. Переведите курсоры в режим измерения частоты 1 Д T D (кратковременным нажатием кнопки FUNC) и запишите частоту строчных импульсов. Зафиксируйте так-

же результат измерения частоты в автоматическом режиме, который выводится в правом нижнем углу экрана. Результаты занесите в таблицу по форме табл. 2.3.

Таблица 2.3

Измеренные параметры строчного видеосигнала

Параметр

Стандартное

Измеренное

Погрешность,

значение

значение

Период строчных синхроимпульсов, мкс

Частота строчных импульсов, Гц

Частота строчных импульсов

(автоматическое измерение), кГц

Длительность гасящего импульса строк, мкс

Длительность строчного синхроимпульса,

Длительность сдвига синхроимпульса

относительно начала гасящего импульса, мкс

Для измерения параметров строчного синхроимпульса используйте задержанную развертку. Переведите осциллограф сначала в режим двойной развертки (ALT). На экране появится изображение полного сигнала и фрагмента сигнала, создаваемого задержанной разверткой (область ее действия выделена двумя пунктирными линиями – не путать с курсорами!). Установите область задержанной развертки на строчный синхроимпульс ручками DELAY TIME и TIME/DIV. Переключите осциллограф в режим задержанной развертки (DELAY). На экране появится изображение синхроимпульса в крупном масштабе. Курсорами в режиме Д T D (при включенном режиме CURSOR POS) измерьте длительности гасящего импульса и строчного синхроимпульса, а также сдвиг синхроимпульса относительно начала гасящего импульса (см. рис. 2.3). Сравните их со стандартными значениями. Занесите результаты измерений в таблицу по форме табл. 2.3.

Вернитесь в основной режим развертки MAIN. Измерьте длительность сигнала изображения черно-белых полей. Он имеет вид ступеньки, отражающей урони белого (максимум) и черного (минимум). Включите курсоры измерения разности напряжений V 1 (кнопка FUNC) и измерьте уровни напряжения видеосигнала: уровень белого (максимальное значение напряжения), уровень черного (уровень ступеньки) и уровень гасящих импульсов относительно минимального значения напряжения - уровня строчных синхроимпульсов. Результаты сведите в таблицу по форме табл. 2.4. Зарисуйте вид синхроимпульса и нанесите на него измеренные параметры.

Таблица 2.4

Измеренные параметры сигнала изображения черно-белых полей

Длительность

Длительность

Амплитуда

U си U max ,

ступеньки

строчного

изображения,

белого уровня,

импульса

U max , В

U min , В

U си , В

Измерение параметров кадрового ТВ-видеосигнала

Исследуйте форму кадрового синхроимпульса. Он содержит гасящий кадровый импульс с кадровым синхроимпульсом в его начале (см. рис. 2.3). Кадровый синхроимпульс заполняется импульсами врезок двойной строчной частоты. До и после кадрового синхроимпульса следуют уравнивающие импульсы двойной строчной частоты и длительности, в 2 раза меньшей длительности строчных синхроимпульсов и импульсов врезок.

Для наблюдения кадровых импульсов используйте основную развертку (MAIN). Кнопкой TV-V/TV-H установите режим синхронизации по кадрам TV-V. Полярность синхронизации SLOPE – отрицательная. Подберите коэффициент основной развертки (MTB) так, чтобы получить на экране несколько периодов полей (полукадров) сигнала. Установите режим курсорных измерений длительным нажатием кнопки CURSOR ON/OFF. Выберите режим измерения длительности Д T D кнопкой FUNC. Используя курсоры, измерьте период и частоту кадровых синхроимпульсов по методике, аналогичной изложенной ранее для строчных синхроимпульсов. Запишите результат автоматического измерения частоты, выводимого в нижнем углу экрана. Занесите результаты в таблицу по форме табл.

Таблица 2.5

Измеренные параметры кадрового видеосигнала

Параметр

Стандартное

Измеренное

Погрешность,

значение

значение

Период кадровых синхроимпульсов, мс

Частота кадровых импульсов, Гц

Частота кадровых импульсов

(автоматическое измерение), Гц

Длительность гасящего импульса кадров, мкс

Длительность кадрового синхроимпульса,

Включите режим ALT и установите область задержанной развертки на второй кадровый гасящий импульс. Переключите осциллограф в режим задержанной развертки и получите изображение кадрового гасящего импульса от начала синхроимпульса до сигнала изображения следующей строки. Зарисуйте его вид.

Перемещая курсоры ручками C1 и C2, измерьте длительность кадрового гасящего импульса и длительность кадрового синхроимпульса. Сравните их со стандартными значениями. Занесите результаты измерений в таблицу по форме табл. 2.5.

Измерение отношения сигнал/шум видеосигнала с телевизионной камеры

Подайте на вход канала CH1 видеосигнал от телевизионной камеры. Установите на осциллографе следующие параметры органов управления: переключатель входа канала – в положение DC – «открытый вход», кнопку

GND – отключить;

основной режим развертки – MAIN;

режим запуска (MODE) – TV, источник синхросигнала (SOURCE) – CH1; полярность синхронизации (SLOPE) – отрицательная;

кнопкой TV-V/TV-H установите режим выделения заданной строки в систе-

Выберите коэффициенты отклонения и развертки так, чтобы получить изображение одной строки в удобном масштабе. Ручкой TV LINE SELECT выберите строку в пределах центра поля (с номером в пределе 100–200).

Используйте видеокамеру при максимальном усилении, для чего закройте объектив светонепроницаемым колпаком. Система автоматического регулирования усиления (АРУ) камеры установит наибольший коэффициент усиления, а на осциллограмме будет наблюдаться дорожка внутренних шумов камеры на уровне сигнала черного цвета. Зарисуйте полученную осциллограмму видеосигнала.

установите на верхний край шумовой дорожки (по наибольшим выбросам), другой – на нижний. Предполагая нормальное распределение шума, считаем, что ширина шумовой дорожки соответствует отклонению случайного сигнала в пределах 3у. Тогда у (среднеквадратическое значение шума) определим как

V ш 6 .

Измерьте амплитуду полезного сигнала как размах между сигналами от черного и белого полей изображения. На осциллограмме такого изображения наблюдается ступенчатый видеосигнал. Измерьте его размах V с от уровня черного до уровня белого. Рассчитайте отношение сигнал/шум, дБ, по следующей формуле:

Запишите результаты измерения и расчета отношения сигнал/шум.

Отчет по лабораторной работе должен содержать структурную схему осциллографа, результаты измерений, краткие выводы.

До недавнего времени было выпущено много типов приставок-селекторов ДМВ, рассчитанных на прием телевизионных сигналов на любом из 21 каналов ДМВ (с 21 -го по 41 -и) и преобразование их в сигналы метрового диапазона (1-й и 2-й канал). Отсутствие блока ДМВ в телевизорах предшествующих поколений заставило многих приобрести приставки ДМВ. В Витебске недавно был включен передатчик на 48-й канал. Для расширения принимаемого диапазона до 59-го канала предлагаю простейшую доработку приставки-селектора "Умань" и ей подобных с диапазоном 21 ...41 каналы. Доработка содержится в повышении напряжения настройки (UH) вари-капов до 26 В (вместо 18 В). Для этого нужно разорвать связь между резисторами R2 и R3 блока стабилизации и подать вывод 3 резистора R2 на точку R1 (рис.1). Можно сделать это коммутацией через тумблер (рис.2) - тогда сохраняется диапазон 21...41 канал. Puc.2После этого - произвести настройку на 48-й канал (или иной этого порядка) как обычно. Эта доработка аналогичным образом делается и на других типах приставок-селекторов ДМВ, рассчитанных на прием 21 ...41 каналов. Схемы их практически унифицированы.В.РЕЗКОВ, 210032, г.Витебск, ул.Чкалова, 30/1 - 58. ...

Для схемы "ОСЦИЛЛОГРАФИЧЕСКАЯ ПРИСТАВКА К ТЕЛЕВИЗОРУ"

Измерительная техникаОСЦИЛЛОГРАФИЧЕСКАЯ ПРИСТАВКА К Инж. В. КРАПИВНИКОВОписания осциллографических приставок к телевизору уже публиковались на страницах журнала ("Радио", 1959, № 1; 1965, № 8 и др.). Однако в отличие от них предлагаемая приставка не требует вмешательства в схему телевизора (она подключается к антенному гнезду телевизора). Совместно с генератором качающейся частоты ее можно использовать для налаживания усилителей ПЧ радиоприемников. Приставку (рис. 1 и 2) можно рассматривать как миниатюрный телевизионный передатчик. Несмотря на относительную простоту схемы в этом передатчике формируется полный телевизионный сигнал, который отличается от стандартного сигнала только отсутствием уравнивающих импульсов.Puc.1Кадровые синхроимпульсы формируются из переменного синусоидального напряжения усилителем-ограничителем (Т1), дифференцирующей цепью R8C4 и пороговым усилителем (T1). Их длительность приблизительно 1,9 мсек. Puc.2Блокинг-генератор на транзисторе Гз генерирует строчные синхроимпульсы. Это не основные импульсы блокинг-генератора, а выбросы коллекторного напряжения, возникающие сразу вдогонку за основными. Между коллекторами транзисторов Т4 и T5 включен разделительный диод Д3. В момент генерации основного импульса коллектор транзистора Т4 замыкается на шасси через открытый транзистор T5 и диод Д3. Вследствие этого в кадровых синхроимпульсах появляются врезки, которые, как и требуется, предшествуют строчным синхроимпульсам. Обмотки трансформатора Тр1 блокинг-генератора намотаны на тороидальном сердечнике из оксифера (H=1000). Внешний диаметр сердечника 10 мм, а. толщина 2 мм. Обмотки I и III содержат...

Для схемы "МОДУЛЯТОР"

Узлы радиолюбительской техникиМОДУЛЯТОРН.Мартынюк225860, Брестская обл., г.Кобринул.Южная, 18Модулятор-передатчик предназначен для сопряжения видеомагнитофона или видеокамеры с телевизором по высокой частоте.В большинстве видеомагнитофонов есть выход по высокой частоте, но в некоторых моделях видеомагнитофонов и телевизоров промежуточная частота звука не соответствует нашему стандарту (6,5 МГц), поэтому при подключении по высокой частоте в телевизоре отсутствует звук.Также большинство модуляторов работате в ДМВ диапазоне, что требует наличия блока СКД в телевизоре. Данный модулятор-передатчик формирует полный телевизионный сигнал на частоте 1...3 каналов MB. Промежуточная частота звука устанавливается потенциометром R6. Модулятор можно подключить к телевизору экранированным кабелем или по эфиру (как игровые приставки типа "Денди")На транзисторе VT3 собран генератор несущей частоты изображения, а на транзисторах VT1, VT2 - генератор несущей частоты звука. На транзисторе VT3 происходит преобразование низкочастотных видео- и аудиосигналов в сигналы радиочастотыКатушка LI - бескаркасная, намотана на оправке диаметром 6 мм проводом ПЭЛ 0,8 и содержит 8 витков. L2 - 2 витка проводом ПЭЛ 0,4 поверх L1. Потенциометром R6 устанавливается необходимая промежуточная частота. Модулятор-передатчик можно также использовать совместно с персональным компьютером.РАДИОЛЮБИТЕЛЬ 9/97, с.5....

Для схемы "Схема, обеспечивающая развертку по диагональной оси любого осциллогр"

Радиолюбителю-конструкторуСхема, обеспечивающая развертку по диагональной оси любого Ланц, Станфордский университет (Станфорд, шт. Калифорния) Разработана схема, которая позволяет получить отклонение по диагонали независимо от существующих каналов отклонения по вертикали и горизонтали. В результате с помощью любого осциллографа вместо обычных двухкоординатных осциллограмм в плоскости Х-Y можно получить на самом деле трехмерное изображение. Результирующий трехкоординатный индикатор с осями X, Y, Z создает удивительный результат трехмерного изображения без какой-либо доработки осциллографа. Новый прибор позволяет исследовать трехпараметрические кривые и трехчастотные фигуры Лиссажу, получить трехмерные изображения знаков, а также может применяться в различных визуальных индикаторах.Для отклонения по диагонали входной сигнал диагонального отклонения одновременно подается на входы усилителей вертикального и горизонтального отклонения. К174КН2 микросхема В результате получается известная фигура Лиссажу для синфазных сигналов, а именно линия под углом 45°. Операционные усилители А1 и А2 развязывают вход сигнала диагонального отклонения от входов сигналов вертикального и горизонтального отклонения, а операционные усилители А3 и А4 суммируют компоненты сигнала диагонального отклонения с входными сигналами вертикального и горизонтального отклонения соответственно. Коэффициенты усиления операционных усилителей A1 и А2 регулируются определенным образом, поскольку угол наклона диагональной оси прямо пропорционален их отношению. Регулировкой трех входных цепей обеспечивается раздельное менеджмент чувствительностью всех трех каналов.РИС.1. Четыре операционных усилителя обеспечивают отклонение луча по диагонали и создают результат глубины на экране обычного осциллогра...

Для схемы "ПРИСТАВКА-ГКЧ ДЛЯ ДИАПАЗОНОВ 300...900и 800... 1950 МГц"

Измерительная техникаПРИСТАВКА-ГКЧ ДЛЯ ДИАПАЗОНОВ 300...900и 800... 1950 МГц Регулировка радиоэлектронной аппаратуры с визуальным отображением амплитудно-частотных характеристик постоянно пользуется у радиолюбителей и специалистов повышенным интересом, так как позволяет оперативно видеть на экране измерительного прибора результаты воздействия при изменении какого-либо параметра или элемента настраиваемого изделия. Единственным недостатком данного метода контроля является сравнительно высокая цена(у) промышленных образцов измерителей частотных характеристик. Но радиолюбители и в этом месте нашли достойный выход - создание простых приставок к ставшему уже привычным осциллографу. При этом частотная характеристика самого особой роли не играет. В журнале "Радио" 1994, № 1, с.26 приводилось описание такой для регулировки телевизионной аппаратуры с указанием на возможности расширения ее функциональных возможностей. Схемы конвертера радиолюбителя Сегодня мы приводим рекомендации по доработке данной приставки с поставленной задачей использования ее для регулировки устройств, работающих в диапазонах ДМВ и СВЧ (селекторы каналов ДМВ, тюнеры систем спутникового телевизионного вещания и др.). Публикация в названном журнале описания приставки для измерения частотных характеристик и последующие отклики радиолюбителей заставили заняться разработкой рекомендаций для массового повторения устройства, работающего в диапазонах более высоких частот. Ниже приводятся описания двух вариантов доработок приставки с генераторами на 300...900 и 800...1950 МГц. При этом оказалось, что модификация приставки не требует полной ее переделки, довольно только изменить конструкцию высоко...

Для схемы "ПРИСТАВКА С МАГНИТНЫМ МОДУЛЯТОРОМ"

Измерительная техникаПРИСТАВКА С МАГНИТНЫМ МОДУЛЯТОРОМКанд. техн. наук В. ГОРБЕНКО, инж. Е. ГОРБЕНКО, инж. В. МИРОНОВЗдесь описывается приставка к осциллографу, в которой качание частоты, генерируемой туннельным диодом, производится при помощи магнитного модулятора. Приставка обеспечивает плавное перекрытие центральных частот в пределах 20-100 Мгц при изменении девиации этих частот в пределах от 0,5 до 10 Мгц. С помощью такой можно настраивать усилитель ПЧ изображения телевизора, переключатель телевизионных каналов на первых пяти телевизионных каналах, а также, используя гармоники генератора качающейся частоты, проверять прохождение сигнала в 6-12 каналах. изображена на рис.1. Катушка L1 генератора намотана на торроидальном ферритовом сердечнике, который помещается в воздушный зазор управляющего дросселя Др1. Описание микросхемы 0401 Через Др1 протекает постоянный и переменный ток частотой 50 гц.Puc.1Изменяя величину постоянного тока с помощью потенциометра R3, устанавливают центральную частоту генератора качающейся частоты, а изменяя величину переменного тока с помощью потенциометра R2, - необходимую девиацию частоты. Для срыва генерации во час обратного хода луче и получения нулевой линии используется усилителя-ограничителя на транзисторах МП42 (Т1,Т2) и П213Б (Т3). На вход усилителя-ограничителя через фазосдвигающую

Для схемы "Узкополосный источник качающейся частоты"

Измерительная техникаУзкополосный источник качающейся частотыJ. Isbell. Отдел радиоастрономии Техасского университета (Остин, шт. Техас)Схема, содержащая низкочастотный генератор и балансный модулятор, может вырабатывать качающуюся частоту 10,7 МГц±20 кГц, что удобно при наладке каскадов промежуточной частоты в стандартном ЧМ-приемнике. Узкополосный источник качающейся частоты предпочтителен в тех случаях, когда частотную характеристику проверяемого каскада наблюдают на экране осциллографа: изображение получается устойчивым, что невозможно при использовании широкополосного генератора качающейся частоты. Диапазон частотной развертки у описываемой схемы в 2,5 раза уже, чем у имеющегося в продаже генератора качающейся частоты. Благодаря этому побочная частотная модуляция снижается до уровня, при котором она не оказывает заметного влияния.Как видно из рис. 1, сигнал частоты 10,05 МГц, получаемой от кварцевого генератора, смешивается с сигналом средней частоты 650 кГц, получаемой от низкочастотного генератора качающейся частоты. Как проверить микросхему к174пс1 На выходе смесителя получается сигнал со средней частотой 10,7 МГц, которую можно изменять в пределах ±20 кГц путем перестройки 650-кГц генератора. Этот метод качания частоты предпочтительней, чем перестройка высокочастотного генератора, так как. дает лучшую стабильность частоты.Pис. 1Для перестройки генератора качающейся частоты используется варактор, на который подается синусоидальный управляющий сигнал 2 В эфф. на частоте 10 Гц. Частоту управляющего сигнала можно увеличить, но если она превышает 100 Гц. час установления проверяемой схемы может создавать ограничения при наблюдении ее частотной характеристики. Уменьшение амплитуды синусоидального сигнала приведет к сужению диапазона качания частоты, но фактически это влияние будет ничтожно малым, так как обычная амплитуда синусоидального сигнала совершенно достаточна для менеджмента варактором....

Для схемы "ПРИСТАВКА ДЛЯ ИЗМЕРЕНИЯ ЧАСТОТНЫХ ХАРАКТЕРИСТИК"

Измерительная техникаПРИСТАВКА ДЛЯ ИЗМЕРЕНИЯ ЧАСТОТНЫХ ХАРАКТЕРИСТИКВ последнее час в радиолюбительской практике обширно стали применяться визуальные методы проведения контроля характеристик, основанные на использовании панорамных индикаторов. С их помощью удается намного оперативнее производить регу-лировку таких весьма сложных радиотехнических устройств, как фильтры, усилители, радиоприемники, телевизоры, антенны. Однако приобрести такой прибор промышленного изготовления не вечно может быть, да и стоит он недешево. Между тем, без особых затрат можно сделать подобный по функциональному назначению прибор в виде приставки к осциллографу. Такая приставка должна содержать генератор качающейся частоты (ГКЧ), генератор напряжения для развертки осциллографа и выносную детекторную головку. Схема такой приставки показана на рис.1. При разработке ставилась поставленная проблема создать простую, малогабаритную и удобную для повторения конструкцию. Структурная схема микросхемы 251 1НТ Правда, из-за смей простоты она, конечно, не лишена некоторых недостатков, но ее и следует рассматривать лишь как базовую конструкцию. По мере добавления других узлов можно будет расширить функциональные возможности и сервисные удобства прибора. Предлагаемая приставка предназначена для настройки различных электронных устройств в диапазоне частот 48...230 МГц, т.е. в телевизионном диапазоне МВ. Однако эта конструкция позволяет изменять диапазон ее рабочих частот, и тогда она сможет работать в диапазоне ДМВ (300...900 МГц), первой промежуточной частоты спутникового телевидения (800...1950 МГц) или на радиолюбительских KB диапазонах.Основное достоинство такой

Для схемы "МОЩНЫЙ ТРАНЗИСТОР В ЛАВИННОМ РЕЖИМЕ"

Радиолюбителю-конструкторуМОЩНЫЙ ТРАНЗИСТОР В ЛАВИННОМ РЕЖИМЕА. ПИЛТАКЯН, г. МоскваПрименение транзисторов в лавинном режиме позволяет упростить некоторые схемы, получить большие выходные напряжения, высокое быстродействие, не достигаемые при работе транзисторов в обычных режимах. Есть. однако, целый ряд причин, затрудняющих широкое использование лавинного режима работы транзисторов. В первую очередь следует упомянуть внушительный разброс лавинных параметров транзисторов и, как следствие, недостаточно высокую воспроизводимость характеристик устройств на транзисторах, работающих в подобном режиме. Кроме того, вечно есть большая опасность пробоя транзистора в процессе налаживания устройств. Однако несмотря на формальные причины (отсутствие в технических условиях указания о возможности работы в режиме лавинного пробоя), применение обычных транзисторов в режиме лавинного пробоя полностью оправдано в радиоэлектронных устройствах, изготовляемых в единичных экземплярах, при проведении опытов, в радиолюбительских конструкциях и т. Описание микросхемы 0401 п. Хорошие результаты можно получить при использовании в лавинном режиме мощного кремниевого транзистора П701А. На рис. 1 приведена генератора пилообразного напряжения, работающего в автоколебательном режиме. рис. 1Генератор вырабатывает пилообразные импульсы с частотой 20...250 Гц, 200...2500 Гц и 2000...25 000 Гц (положение 1, 2, 3 переключателя S1) и амплитудой - 120 В. На частотах выше 20 кГц амплитуда напряжения снижается до 100 В. Линейность пилообразного напряжения довольно высока, ее ухудшение происходит лишь на самых невысоких частотах первого поддиапазона. Генератор легко синхронизируется внешним сигналом с частотой до сотен килогерц и напряжением от единиц вольт. Входное сопротивление для сигнала синхронизации - приблизительно 90 кОм. При напряжении п...

Измерительная техника

Телевизор в качестве осциллографа

Приставка (см. рисунок), превращает любой телевизор в осциллограф с большим экраном. На нем можно наблюдать НЧ колебания, а с помощью генератора качающей частоты (ГКЧ) визуально настраивать усилители ПЧ радиоприемников. Приставку можно рассматривать как миниатюрный телевизионный передатчик. Несмотря на относительно простую схему, в этом передатчике формируется полный телевизионный сигнал, который отличается от стандартного только отсутствием уравнивающих импульсов. Кадровые синхроимпульсы формируются из эталонного синусоидального напряжения усилителем-ограничителем VT1, дифференцирующей цепью R8C4 и пороговым усилителем на VT4. Их длительность около 1,9 мс. Блокинг-генератор (на транзисторе VT5) генерирует строчные синхроимпульсы. Это неосновные импульсы блокинг-генератора, а выбросы коллекторного напряжения, возникающие сразу вслед за основными. Между коллекторами транзисторов VT4 и VT5 включен разделительный диод VD3. В момент генерации основного импульса коллектор транзистора VT4 замыкается на шасси через открытый транзистор VT5 и диод VD3. Вследствие этого в кадровых синхроимпульсах появляются врезки, которые, как и требуется, предшествуют строчным синхроимпульсам. Обмотки трансформатора VT1 блокинг-генератора намотаны на тороидальном сердечнике из оксиферита(Ф-1000) Внешний диаметр сердечника 10 мм, толщина 2 мм. Обмотки I и III содержат по 100 витков, а обмотка II - 30 витков провода ПЭЛШО o0,1. В начале периода строчной развертки импульс напряжения блокинг-генератора быстро заряжает конденсатор С6 через диод VD2. В течение остальной части периода он медленно разряжается через резистор R6. Возникающее при этом пилообразное напряжение поступает на базу транзистора VT2. Здесь оно складывается с входным напряжением. Трехкаскадный усилитель из-за большого коэффициента усиления (50000-100000) работает практически в релейном режиме, характеризующемся определенным порогом срабатывания. Параметры приставки выбраны такими, что при отсутствии исследуемого напряжения осевая линия находится в центре экрана. При необходимости изображение на экране можно сдвинуть в ту или иную сторону изменением сопротивления резистора R3. Для повышения четкости изображения линии на экране телевизора усилитель (VT2, VT3, VT6) охвачен положительной обратной связью с коллектора транзистора VT3 на базу транзистора VT2 через конденсатор С5. Это значительно повышает усиление в области высоких частот и, следовательно, увеличивает крутизну фронта выходных импульсов. Визуально это проявляется в повышенной резкости перехода от белого к черному. Кадровые, строчные и видеоимпульсы складываются на входе эмитерного повторителя VT7, который является модуляционным усилителем УКВ генератора VT8. Последний собран по схеме емкостной трехточки. Частота генерации должна быть выбрана равной несущей частоте изображения свободного телевизионного канала. В противном случае приставка может создавать помехи работе соседних телевизоров. Требуемые частоты генерации можно получить, подбирая число витков катушки L1.

При настройке на второй телевизионный канал (59,25 МГц) катушка L1 содержит 5 витков провода ПЭВ 0,6, диаметр катушки 9 мм. Модулированное ВЧ напряжение поступает на выход приставки через делитель R18-R19, который понижает напряжение до 3 мВ во избежание перегрузки ВЧ тракта телевизора. Выход приставки коаксиальным кабелем или скрученым двойным проводом соединяют с антенным входом телевизора.

Конструкция и налаживание. Все детали приставки, за исключением УКВ генератора, можно расположить на монтажной плате в произвольном порядке. Детали, относящиеся к УКВ генератору (СП-С15, L1, VT8), должны иметь короткие выводы, соединять их между собой следует короткими проводниками и группировать в одном месте. Никакой экранировки приставки не требуется Если частота импульсов блокииг-генератора не лежит в диапазоне частоты строк телевизора, необходимо ввести ее в этот диапазон, изменяя в небольших пределах сопротивление резистора R14. Следует отметить, что синхронизация разверток телевизора от приставки обычно получается очень устойчивой, поэтому плохая синхронизация при налаживании приставки указывает на какую-нибудь ошибку в монтажа. Чтобы добиться точной настройки УКВ генератора приставки на выбранный телевизионный канал, приходиться растягивать или сжимать витки обмотки катушки L1, т.е. менять шаг намотки. При правильной настройке линия на экране резко очерчена. Параметры приставки подобраны так, что наибольший размер изображения на экране телевизора соответствует входному напряжению около 0,3 В. Чувствительность приставки можно регулировать, изменяя сопротивление резистора R2. Для проверки чувствительности на вход подают переменное напряжение известной величины либо от звукового генераторе.

Самодельные измерительные приборы

Собрать осциллограф в своей домашней мастерской удается только самым опытным. Причин тому много: сложность электронной схемы, дефицитные детали, большой объем работы... Промышленность, правда, выпускает две-три модели для радиолюбителей, но они довольно дороги, да и в магазинах бывают нечасто.

Предлагаем несложную приставку, с помощью которой вы сможете превратить телевизор в простейший осциллограф . Никаких изменений в схему телевизора при этом вносить не придется, выход приставки достаточно соединить с антенным входом телевизора, и на экране появится изображение исследуемого сигнала.

Схема приставки- осциллографа

Давайте теперь познакомимся с основными принципами работы приставки-осциллографа. С помощью блокинг-генератора и формирователя импульсов приставка вырабатывает кадровые и строчные синхроимпульсы. Складываясь, они образуют полный сигнал телевизионного изображения. Когда на выход приставки подается исследуемый сигнал, его периодически меняющееся напряжение управляет засвечиванием отдельных сегментов строк растра. Таким образом приставка формирует полный телевизионный видеосигнал с картинкой, который затем подается на вход УКВ-генератора и модулирует его излучение по частоте. Сам генератор работает в диапазоне второго телевизионного канала, так что если выход приставки соединить с антенным входом телевизора, настроенного на этот же канал, то на экране появится изображение исследуемого сигнала.

Как вы уже заметили, на вход приставки подаются два напряжения - исследуемый сигнал Uсигн и переменное напряжение 6,3 В синхронизации кадровой развертки частотой 50 Гц. Его можно снимать с накальной обмотки любого сетевого трансформатора или со специальной дополнительной обмотки трансформатора блока питания приставки.

Переменное напряженнее частотой 50 Гц поступает на формирователь импульсов, выполненный на транзисторах VT6 и VT7. Транзистор VT6 образует каскад усиления по напряжению. Как только амплитуда синхронизирующего напряжения превышает определенный уровень, транзистор входит в режим насыщения и запирается, т. е. работает одновременно в двух режимах - усилительном и ключевом. Затем через дифференцирующую цепочку из конденсатора С11 и резистора R13 напряжение синхронизации поступает на базу транзистора VТ7, который формирует кадровые синхроимпульсы по телевизионному стандарту.

Строчные синхроимпульсы вырабатывает транзисторный блокинг-генератор на транзисторе VТ8 с индуктивной положительной обратной связью. Пилообразная форма строчных синхроимпульсов получается за счет периодического процесса заряда-разряда конденсатора С13, включенного в цепь обмотки II блокинг-трансформатора Т1. С нее строчные синхроимпульсы через резистор R19 и конденсатор С15 поступают на базу транзистора VT3.

Исследуемый сигнал усиливается каскадами на транзисторах VT1, VТ2 и VТ3. Большой коэффициент усиления этих каскадов определяется номиналами резистора R3 и конденсатора С3, которые включены в цепь положительной обратной связи. Периодически меняющееся напряжение исследуемого сигнала управляет яркостью засвечиваемых строк - как бы моделируя строчные синхроимпульсы. Транзистор VТ4 включен по схеме эмиттерного повторителя и работает как усилитель тока.

Полный сигнал телевизионного изображения, сформированный приставкой, поступает на вход УКВ-генератора, собранного на транзисторе VT5, который моделирует его по частоте. Выходной сигнал приставки снимается с делителя напряжения из резисторов R9 и R10. При указанных на схеме номиналах деталей этот УКВ-генератор работает в диапазоне частот второго телевизионного канала метровых волн.

Питается приставка от стабилизированного источника напряжения 12 В, в качестве которого можно использовать блок питания, описанный в № 2 приложения за 1987 год. Впрочем, его можно собрать и по упрощенной схеме (см. рис. 4), используя трансформатор серии ТВК. Стабилитрон VD1 задает напряжение стабилизации, которое поступает на базу мощного транзистора VТ1, работающего в режиме усилителя тока. Резистор R1 задает ток базы, а конденсатор С2 "набело" фильтрует выходное напряжение.

Вместо стабилитрона Д814Д можно использовать Д813 или КС512 с любым буквенным индексом. Транзистор можно заменить на любой другой n-p-n с номинальной мощностью рассеивания не менее 1 Вт. Блок питания монтируется на печатной или макетной плате. Транзистор VT1 закрепите на радиаторе с общей площадью 15-20 см 2 .

Схема самой приставки монтируется на печатной плате фольгированного по одной стороне текстолита или гетинакса. Расположение печатных проводников показано на рисунке 2, а радиодеталей на плате - на рисунке 3.

Трансформатор Т1 намотайте на кольцевом ферритовом сердечнике размером 10x14x2 мм. Обмотка I содержит 100 витков, II -35, a III - 90 витков провода ПЭЛ-0,1. Процедуру намотки трансформатора можно упростить, если ферритовый сердечник предварительно аккуратно расколоть на две части, намотать на них обмотки, а затем склеить клеем БФ-2 или "Моментом". Катушка L1 колебательного контура УКВ-генератора содержит всего 6 витков медного провода в эмалевой оболочке толщиной 0,6-0,8 мм и наматывается на пластмассовом каркасе с ферритовым сердечником, например, от контуров старого телевизора.

Транзисторы VT1-VT8 - КТ315, диоды VD1-VD6 - КД522.

Печатную плату приставки необходимо поместить в корпус из экранирующего материала - латуни или алюминия, соединив общий провод с корпусом.

Если же корпус выполнен из дерева или пластмассы, его внутреннюю поверхность склейте медной или алюминиевой фольгой и соедините ее с общим проводом схемы.

На передней панели корпуса разместите клеммы для подключения напряжения синхронизации и исследуемого сигнала. Соединять их с платой можно только экранированным проводом.

Возможности приставки значительно расширятся, если вы проведете следующую доработку. Например, если замените резистор на другой, с сопротивлением 50 Ом, и последовательно с ним включите переменное сопротивление в 100 Ом, то сможете регулировать амплитуду выходного телевизионного сигнала приставки. Меняя сопротивление резисторов R15 и R8, можно управлять размером изображения по вертикали и горизонтали.

Выход приставки соединяется с антенным гнездом телевизора только коаксиальным кабелем типа РК-75. Оплётки его спаяйте с шиной общего провода. Сам кабель после пайки необходимо закрепить на плате с помощью хомутиков из жести или алюминия. Для удобства подключения к коаксиальному кабелю можно припаять антенный штекер.

Когда все детали будут установлены на плате и припаяны, тщательно проверьте правильность монтажа, обращая особое внимание на зазоры между токоведущими дорожками платы. Если между ними образовались перемычки из натеков припоя, их надо аккуратно удалить с помощью канифольного флюса или просто процарапать острым шилом. А если все в порядке, можно начать испытания.

Чувствительность приставки такова, что максимальный размах изображения на экране получается при амплитуде исследуемого сигнала около 0,3 В. И чтобы исследовать сигналы большей амплитуды, придется сделать аттенюратор (ослабитель) на базе простейшего делителя напряжения. Правильно рассчитать его помогут формулы и схема на рисунке 5. Для исследования слабых сигналов к входу можно подключить чувствительный УНЧ с эмиттерным повторителем.

Пригодится ваш самодельный осциллограф и для измерения напряжения исследуемого сигнала. Для того чтобы превратить приставку в вольтметр, достаточно закрепить на экране масштабную сетку. Ее можно сделать из листа оргстекла, а линии прочертить иголкой циркуля. Для четкости процарапанные бороздки прокрасьте черным или коричневым фломастером. Остатки краски с поверхности оргстекла легко удаляются ваткой, смоченной в одеколоне. Когда сетка будет готова, подайте на вход приставки напряжение с заведомо известной амплитудой и зафиксируйте его значение на масштабной сетке. Так проводится калибровка.

Юный Техник Для умелых рук 1988 №9