Как рассчитать тепловой насос для отопления дома. Отопление дома. Схема отопления дома с тепловым насосом. Тепловой насос от кондиционера

Как известно, тепловые насосы используют бесплатные и возобновляемые источники энергии: низкопотенциальное тепло воздуха, грунта, подземных, сточных и сбросовых вод технологических процессов, открытых незамерзающих водоемов. На это затрачивается электроэнергия, но отношение количества получаемой тепловой энергии к количеству расходуемой электрической составляет порядка 3-7. Говоря более точно, источниками низкопотенциального тепла могут быть наружный воздух температурой от -15 до +15°С, отводимый из помещения воздух (15-25°С), подпочвенные (4-10°С) и грунтовые (более 10°C) воды, озерная и речная вода (0-10°С), поверхностный (0-10°С) и глубинный (более 20 м) грунт (10°С).

Если в качестве источника тепла выбран атмосферный или вентиляционный воздух, применяются тепловые насосы, работающие по схеме «воздух-вода». Насос может быть расположен внутри или снаружи помещения. Воздух подается в его теплообменник с помощью вентилятора.

При использовании в качестве источника тепла грунтовой воды она подается из скважины с помощью насоса в теплообменник насоса, работающего по схеме «вода-вода», и либо закачивается в другую скважину, либо сбрасывается в водоем.
Если источник - водоем, на его дно укладывается петля из металлопластиковой или пластиковой трубы. По трубопроводу циркулирует раствор гликоля (антифриз), который через теплообменник теплового насоса передает тепло фреону.

Возможны два варианта получения низкопотенциального тепла из грунта: укладка металлопластиковых труб в траншеи глубиной 1,2-1,5 м либо в вертикальные скважины глубиной 20-100 м. Иногда трубы укладывают в виде спиралей в траншеи глубиной 2-4 м. Это значительно уменьшает общую длину траншей. Максимальная теплоотдача поверхностного грунта составляет 50-70 кВт.ч/м 2 в год. По данным зарубежных компаний, срок службы траншей и скважин составляет более 100 лет.

Расчет горизонтального коллектора теплового насоса

Съем тепла с каждого метра трубы зависит от многих параметров: глубины укладки, наличия грунтовых вод, качества грунта и т.д. Ориентировочно можно считать, что для горизонтальных коллекторов он составляет 20 Вт/м. Более точно: сухой песок - 10, сухая глина - 20, влажная глина - 25, глина с большим содержанием воды - 35 Вт/м. Разницу температуры теплоносителя в прямой и обратной линии петли при расчетах принимают обычно равной 3 °С. На участке над коллектором не следует возводить строений, чтобы тепло земли пополнялось за счет солнечной радиации.

Минимальное расстояние между проложенными трубами должно быть 0,7-0,8 м. Длина одной траншеи составляет обычно от 30 до 120 м. В качестве теплоносителя первичного контура рекомендуется использовать 25-процентный раствор гликоля. В расчетах следует учесть, что его теплоемкость при температуре 0 °С составляет 3,7 кДж/(кг.К), плотность - 1,05 г/см 3 . При использовании антифриза потери давления в трубах в 1,5 раза больше, чем при циркуляции воды. Для расчета параметров первичного контура теплонасосной установки потребуется определить расход антифриза:

Vs = Qo.3600 / (1,05.3,7..t),

Где.t - разность температур между подающей и возвратной линиями, которую часто принимают равной 3 К, а Qo - тепловая мощность, получаемая от низкопотенциального источника (грунт). Последняя величина рассчитывается как разница полной мощности теплового насоса Qwp и электрической мощности, затрачиваемой на нагрев фреона P:

Qo = Qwp - P, кВт.

Суммарная длина труб коллектора L и общая площадь участка под него A рассчитываются по формулам:

Здесь q - удельный (с 1 м трубы) теплосъем; da - расстояние между трубами (шаг укладки).

Пример расчета Теплового Насоса

Исходные условия: теплопотребность коттеджа площадью 120-240 м 2 (в зависимости от теплоизоляции) - 12 кВт; температура воды в системе отопления должна быть 35 °С; минимальная температура теплоносителя - 0 °С. Для обогрева здания выбран тепловой насос WPS 140 l (Buderus) мощностью 14,5 кВт (ближайший больший типоразмер), затрачивающий на нагрев фреона 3,22 кВт. Теплосъем с поверхностного слоя грунта (сухая глина) q равняется 20 Вт/м. В соответствии с показанными выше формулами рассчитываем:

  1. требуемую тепловую мощность коллектора Qo = 14,5 - 3,22 = 11,28 кВт;
  2. суммарную длину труб L = Qo/q = 11,28/0,020 = 564 м. Для организации такого коллектора потребуется 6 контуров длиной по 100м;
  3. при шаге укладки 0,75 м необходимая площадь участка А = 600 Ч 0,75 = 450 м 2 ;
  4. общий расход гликолевого раствора Vs = 11,28.3600/ (1,05.3,7.3) = 3,51 м 3 /ч, расход на один контур равен 0,58 м 3 /ч.

Для устройства коллектора выбираем металлопластиковую трубу типоразмера 32Ч3 (например, Henco). Потери давления в ней составят 45 Па/м; сопротивление одного контура - примерно 7 кПа; скорость потока теплоносителя - 0,3 м/с.

Расчет зонда

При использовании вертикальных скважин глубиной от 20 до 100 м в них погружаются U-образные металлопластиковые или пластиковые (при диаметрах выше 32 мм) трубы. Как правило, в одну скважину вставляется две петли, после чего она заливается цементным раствором. В среднем удельный теплосъем такого зонда можно принять равным 50 Вт/м. Можно также ориентироваться на следующие данные по теплосъему:

  • сухие осадочные породы - 20 Вт/м;
  • каменистая почва и насыщенные водой осадочные породы - 50 Вт/м;
  • каменные породы с высокой теплопроводностью - 70 Вт/м;
  • подземные воды - 80 Вт/м.

Температура грунта на глубине более 15 м постоянна и составляет примерно +10 °С. Расстояние между скважинами должно быть больше 5 м. При наличии подземных течений, скважины должны располагаться на линии, перпендикулярной потоку.

Подбор диаметров труб проводится исходя из потерь давления для требуемого расхода теплоносителя. Расчет расхода жидкости может проводиться для.t = 5 °С.

Пример расчета: Исходные данные - те же, что в приведенном выше расчете горизонтального коллектора. При удельном теплосъеме зонда 50 Вт/м и требуемой мощности 11,28 кВт длина зонда L должна составить 225 м.

Для устройства коллектора необходимо пробурить три скважины глубиной по 75 м. В каждой из них размещаем по две петли из металлопластиковой трубы типоразмера 26Ч3; всего - 6 контуров по 150 м.

Общий расход теплоносителя при.t = 5 °С составит 2,1 м3/ч; расход через один контур - 0,35 м3/ч. Контуры будут иметь следующие гидравлические характеристики: потери давления в трубе - 96 Па/м (теплоноситель - 25-процентный раствора гликоля); сопротивление контура - 14,4 кПа; скорость потока - 0,3 м/с.

Выбор оборудования

Поскольку температура антифриза может изменяться (от -5 до +20 °С) в первичном контуре тепло насосной установки необходим расширительный бак.

Рекомендуется также установить на возвратной линии накопительный бак: компрессор теплового насоса работает в режиме «включено-выключено». Слишком частые пуски могут привести к ускоренному износу его деталей. Бак полезен и как аккумулятор энергии - на случай отключения электроэнергии. Его минимальный объем принимается из расчета 10-20 л на 1 кВт мощности теплового насоса.

При использовании второго источника энергии (электрического, газового, жидко- или твердотопливного котла) он подключается к схеме через смесительный клапан, привод которого управляется тепловым насосом или общей системой автоматики.

В случае возможных отключений электроэнергии нужно увеличить мощность устанавливаемого теплового насоса на коэффициент, рассчитываемый по формуле: f = 24/(24 - t откл), где t откл - продолжительность перерыва в электроснабжении.

В случае возможного отключения электроэнергии на 4ч этот коэффициент будет равен 1,2.

Мощность теплового насоса можно подбирать исходя из моновалентного или бивалентного режима его работы. В первом случае предполагается, что тепловой насос используется как единственный генератор тепловой энергии.

Следует принимать во внимание: даже в нашей стране продолжительность периодов с низкой температурой воздуха составляет небольшую часть отопительного сезона. Например, для Центрального региона России время, когда температура опускается ниже -10 °С, составляет всего 900 ч (38 сут), в то время, как продолжительность самого сезона - 5112 ч, а средняя температура января составляет примерно -10 °С. Поэтому наиболее целесообразной является работа теплового насоса в бивалентном режиме, предусматривающая включение дополнительного теплогенератора в периоды, когда температура воздуха опускается ниже определенной: -5 °С - в южных регионах России, -10 °С - в центральных. Это позволяет снизить стоимость теплового насоса и, особенно, работ по монтажу первичного контура (прокладка траншей, бурение скважин и т.п.), которая сильно увеличивается при возрастании мощности установки.

В условиях Центрального региона России для примерной оценки при подборе теплового насоса, работающего в бивалентном режиме, можно ориентироваться на соотношение 70/30: 70 % потребности в тепле покрываются тепловым насосом, а оставшиеся 30 - электрическим котлом или другим теплогенератором. В южных регионах можно руководствоваться соотношением мощности теплового насоса и дополнительного генератора тепла, часто используемым в Западной Европе: 50 на 50.

Для коттеджа площадью 200 м 2 на 4 человек при тепловых потерях 70 Вт/м 2 (при расчете на -28 °С наружной температуры воздуха) потребность в тепле будет 14 кВт. К этой величине следует добавить 700 Вт на приготовление санитарной горячей воды. В результате необходимая мощность теплового насоса составит 14,7 кВт.

При возможности временного отключения электричества нужно увеличить это число на соответствующий коэффициент. Допустим, время ежедневного отключения - 4 ч, тогда мощность теплового насоса должна быть 17,6 кВт (повышающий коэффициент - 1,2). В случае моновалентного режима можно выбрать тепловой насос типа «грунт-вода» Logafix WPS 160 L (Buderus) мощностью 17,1 кВт, потребляющий 5,5 кВт электроэнергии.

Для бивалентной системы с дополнительным электрическим нагревателем и температурой установки -10 °С, с учетом необходимости получения горячей воды и коэффициента запаса, мощность теплового насоса должна быть 11,4 Вт, а электрического котла - 6,2 кВт (в сумме - 17,6). Потребляемая системой пиковая электрическая мощность составит 9,7 кВт.

Главная » Отопление и вентиляция на даче.

�?спользование альтернативных источников получения энергии сегодня представляется первоочередной задачей. Превращение энергии ветра, воды и солнца способно существенно снизить уровень загрязнения окружающей среды и сэкономить финансовые средства, необходимые для реализации технологичных способов получения энергии. В этом плане очень перспективным выглядит использованием так называемых теплонасосов. Тепловой насос — это устройство, способное переносить энергию тепла из окружающей среды внутрь помещения. Метод расчета теплового насоса, необходимые формулы и коэффициенты представлены ниже.

�?сточники тепловой энергии

�?сточниками энергии для тепловых насосов могут выступать солнечный свет, тепло воздуха, воды и грунта. В основе процесса лежит физический процесс, благодаря которому некоторые вещества (хладогенты) способны закипать при низких температурах. При таких условиях коэффициент производительности тепловых насосов может достигать 3 и даже 5 единиц. Это означает, что, затратив 100 Вт электроэнергии на работу насоса, можно получить 0,3-0,5 кВт.

Таким образом, геотермальный насос способен полностью отопить дом, однако при условии, что температура уличной среды не будет ниже температуры расчетного уровня. Как рассчитать тепловой насос?

Техника расчета мощности теплового насоса

С этой целью можно использовать специальный онлайн калькулятор расчета теплового насоса либо выполнить расчеты вручную. Прежде, чем определить необходимую для отопления дома мощность насоса вручную, необходимо определить тепловой баланс дома. Вне зависимости от того, для дома какой площади производится расчет (расчет теплового насоса на 300м2 или на 100м2), используется одна и та ж формула:

  • R — это тепловые потери/мощность дома (ккал/час);
  • V — объем дома (длина*ширина*высота), м3;
  • Т — самый высокий перепад между температурами снаружи дома и внутри в холодное время года, С;
  • k — это усредненный коэффициент теплопроводности здания: k=3(4) — дом из досок; k=2(3) — дом из однослойного кирпича; k=1(2) — кирпичный дом в два слоя; k=0,6(1) — тщательно утепленное здание.

Типовой расчет теплового насоса предполагает, что для того, чтобы перевести полученные значения из ккал/час в кВт/час, необходимо разделить ее на 860.

Пример расчета мощности насоса

Расчет теплового насоса для отопления дома на конкретном примере. Предположим, что необходимо обогреть здание площадью 100 м.кв.

Чтобы получить его объем (V), необходимо умножить его высоту на длину и ширину:

Чтобы узнать T, необходимо получить разницу температур. Для этого из минимальных внутренних температур вычитаем минимальные наружные:

Теплопотери здания примем равными k=1, тогда тепловые потери дома будут рассчитаны следующим образом:

Программа расчета теплового насоса предполагает, что расход домом тепловой энергии должен быть переведен в кВт. Переводим ккал/час в кВт:

  • 12500 ккал/час / 860 = 14,53 кВт.

Таким образом, для отопления дома из двухслойного кирпича площадью 100 м.кв., необходим тепловой насос на 14,5 кВт. Если необходимо произвести расчет теплового насоса на 300м2, то в формулах производится соответствующая подстановка. В данном расчете учтены потребности в теплой воде, необходимой для отопления. Для определения подходящего теплового насоса потребуется таблица расчета теплового насоса, демонстрирующая технические характеристики и производительность той или иной модели.

Тепловые насосы (ТН), позволяющие использовать низкопотенциальное тепло окружающей среды, получили широкое распространение за рубежом. Большинство крупных компаний, производителей и разработчиков теплотехнического оборудования уже присутствуют в этом сегменте рынка. Потребителю, в том числе и российскому, предлагаются серийно выпускаемые аппараты, многократно отработанные решения.

Сдерживающим фактором для их распространения является необходимость относительно больших первоначальных инвестиций. На интернет-форумах активно обсуждается опыт самостоятельного создания отопительных систем с тепловыми насосами, удешевления тех или иных работ и повышения эффективности теплоснабжения.

Мы выбрали отдельные места из этих обсуждений, и попробовали прокомментировать их с позиции профессионального производителя оборудования.

Цена вопроса

Читаем на форуме: Фирмой было предложено поставить ТН и обустроить внешний контур за 1,1 млн руб. Автором самостоятельно приобретены ТН с ГВС производительностью 8 кВт за 93 тыс., пробурены шесть скважин стоимостью 500 руб./м, установлены трубы для теплоносителя, выполнено их соединение с коллектором и ТН.

Общая стоимость работ составила 170 тыс. руб. При средней годовой оплате отопления электричеством 75 тыс. руб. все затраты на ТН должны окупиться за три–четыре года.

Средняя удельная стоимость организации «под ключ» геотермального отопления с ТН в доме площадью 200 м2 составляет порядка 5–7 тыс.

руб./м2. Теплопотребляющая система оказывает решающее влияние на экономичность отопительной установки с ТН и должна обходиться как можно более низкими температурами прямой сетевой воды.

Для отопительных установок с ТН справедливо правило: каждый градус снижения температуры прямой сетевой воды – экономия энергопотребления на 2,5 %. Общие издержки складываются из трех частей: инвестиции, стоимость электроэнергии, побочные расходы. При этом побочными расходами, обычно представляющимися незначительными, пренебрегать не следует: эксплуатационные затраты, трудно прогнозируемые при самостоятельном конструировании системы, могут составить значительную сумму.

Обсудить «Тепловой насос своими руками» на форуме

Технические находки

В качестве основы теплового насоса (ТН) использована обычная сплит-система.

Потребляя электрическую мощность 1,3 кВт, получаем 6,5 кВт тепла. Используемый при этом внешний блок кондиционера на зиму помещают в фанерный утепленный ящик вместе с автомобильным радиатором, к которому подается теплоноситель из грунтового контура.

Летом и в межсезонье стенки ящика открываются.
В другом случае достижения высокой эффективности был применен ТН из двух контуров в каскаде, с двумя компрессорами. Конденсатор выполнен из стальных емкостей, разделенных на два подконденсатора. В первом («горячем»), объемом 3 л, расположены две медные спирали из трубы длиной 10 м.

В «холодный» конденсатор также встроена спираль для принудительного охлаждения компрессоров (рабочая жидкость – тосол). Параметры системы: испаритель – стальной бак (180 л); вода поступает из скважины с температурой 15 °C в объеме 2 м3/ч, сброс ее происходит в другую скважину, находящуюся в 15 м от водозаборной. Общая электрическая мощность, потребляемая всей системой, – 4,2 кВт. Температура хладагента (R22) на входе в «горячий» конденсатор составляет +110 °C, на выходе – +55 °C.

При входе в «холодный» конденсатор – +55 °C, при выходе из него – +40 °C.

Реализация самого принципа ТН и приобретение необходимого при этом оборудования не представляют трудностей. Однако согласование параметров отдельных частей, их увязка в единую установку может быть затруднительна даже для специализированной фирмы.

Ведь речь идет о проектировании и изготовлении технически сложного оборудования. Поэтому удачная (эффективная) работа самостоятельно изготовленного ТН относится больше к области везения, чем точного инженерного расчета: никто не может дать гарантии, что такой аппарат будет хорошо функционировать с пятой, десятой или сотой попытки модернизации.

Первичный контур

Самостоятельное бурение и обустройство глубоких скважин, требующее применения спецтехники, может вызвать немало проблем уже на начальной стадии: «три дня бурили, два дня чинили машину, день разгребали кучи глины, сделали четыре зонда по 25 м.

Стоимость скважин – 650 руб./м».

Выбор и расчет теплового насоса

Для зонда применены трубы из ПНД, рассчитанные на давление 6 бар. Опускаемые в скважину трубы (их может быть две или четыре, в зависимости от диаметра скважины) соединены U-образным наконечником.

При этом в зимних условиях для предотвращения разрушения при монтаже такие трубы были предварительно подогреты в помещении. Можно добиться большей экономии, выполнив наружный контур самостоятельно, но без бурения глубоких скважин.

Варианты его расположения: под домом или снаружи, в земле.

В ТН с вертикальными зондами теплообменная система устанавливается в скважинах глубиной от 20 до 100 м. В среднем двойной U-образный зонд с каждого метра длины дает примерно 55 Вт тепловой мощности.

Точное значение зависит от геологических и гидрогеологических условий, которые, как правило, неизвестны монтажнику отопления. Поэтому проектирование и бурение скважин должно быть поручено опытной и сертифицированной на проведение соответствующих работ компании.

Грунтовые воды в качестве источника тепла обычно подходят для реализации моновалентного режима работы теплового насоса. Из соображений экономичности грунтовые воды для тепловых насосов типа «вода–вода» мощностью до 30 кВт не должны поступать с глубины более 15 м.

Борьба за эффективность

При самостоятельном конструировании отопительной системы с ТН можно повысить ее эффективность, модернизировав отдельные части.

Предлагается, например, отказаться от обычного теплоаккумулятора, заменив его бетонной стяжкой, и избежать нежелательных колебаний температуры на подаче установкой смесительного (демпферного) бака.

Для управления самодельным ТН типа «воздух–вода» используют автоматику обычной сплит-системы.
Рассматриваются также возможности получать дополнительное тепло, экспериментируя с хладагентом, применяя компрессоры с «плавающей» производительностью, электронные терморегулирующие вентили, комбинированные теплообменники, а также за счет установки в цепи испарителя солнечного коллектора, рекуператора вытяжки и тепла сточных вод, кухонного «зонта» и т.п.

Обусловленные конструкцией параметры теплообменника должны обязательно быть согласованы с другими параметрами ТН.

Это расчетные характеристики, самостоятельный экспериментальный подбор которых проблематичен. При этом, оперируя понятиями «не тянет» и «работает, но неэффективно», очень сложно попасть в область оптимальных параметров.
В отопительных системах с ТН, где исчезновение напряжения может быть не обнаружено своевременно, необходимо предусмотреть защиту от замораживания.

А буферный накопитель сетевой воды необходим для увеличения времени выбега теплового насоса при незначительном теплопотреблении. Воздушно-водяным насосам он обязателен для того, чтобы обеспечить минимальный 10-минутный выбег в режиме оттаивания. Эксперименты с хладагентами нежелательны: в лучшем случае не удастся достичь намеченных целей, в худшем, например, при использовании пропана, все может закончиться аварией.

Есть опасения…

При работе грунтового теплового насоса зона земляного контура будет сильно охлаждаться и, в конце концов, на участке получишь маленький «ледниковый период».

Избежать этого можно, закапывая контур глубже, чтобы происходила равномерная компенсация тепла, отданного землей, или достичь мощных подземных водоносных слоев. Не допустить появления «вечной мерзлоты» возможно также путем создания одной или двух расположенных на воздухе петель внешнего контура вдоль забора и соединенных на лето с находящейся в земле частью (для «подзарядки» грунта теплом).

Предлагается и другой вариант расположения скважин – на дороге около участка, а воздушная часть внешнего контура закольцовывается со скважинами.

Действительно, ошибки при определении максимально возможного теплосъема и конструировании внешнего контура приводят не только к неудовлетворительной работе ТН, но могут вызвать сильное и глубокое промерзание грунта.

Так называемая зебра (полосы зеленой травы, чередующиеся с голой, глубоко промерзшей землей) иногда формируется над петлями проложенного с нарушениями необходимых требований горизонтального земляного контура. Температура грунта в метре от поверхности может достигать точки замерзания и без утилизации грунтового тепла, на глубине 2 м минимальная температура составляет примерно 5 °C.

С увеличением глубины она возрастает, однако уменьшается и тепловой поток от поверхности грунта. При этом уже не гарантируется оттаивание земли весной. Минимальная глубина прокладки горизонтального контура должна составлять 1,2, максимальная – 1,5 м.
Самостоятельное конструирование первичного контура или следование аналогам без привязки к конкретным параметрам скважины водоносного горизонта, реки, озера (для ТН «вода–вода»), почвы, может привести к серьезным нарушениям в работе системы теплоснабжения.

Сергеев
Журнал «Аква-Терм» №5 (63), 2011

Как сделать свой тепловой насос собственными руками

Сегодня нет сомнений в том, что тепловой насос для отопления дома является самым эффективным из всех существующих.

Это самый дорогой и сложный инструмент. По этой причине многие отечественные мастера сами решили эту проблему. Но, учитывая его большую сложность, достижение положительных результатов нелегко, это требует энтузиазма, терпения и, кроме того, хорошего изучения теории.

Наша статья предназначена для тех, кто делает первый шаг к внедрению такого альтернативного источника энергии, как тепловой насос, который они сами создали.

Принцип работы устройства и работы

Если вы хотите построить существующую модель теплового насоса, вы не можете обойтись без знания теории или лучше, как это устройство работает. Прежде всего, я хотел бы упомянуть, что выступления на 300, 500 и 1000% — это мифы или только маркетинговый ход, который должен игнорировать обычного пользователя физических законов.

Таким образом, тепловой насос представляет собой устройство, которое использует тепловую энергию в одном месте и перемещает ее в другую с определенной эффективностью, которая не превышает 100%. В отличие от котельных, он не производит тепло само по себе.

Например, бытовые холодильники и системы кондиционирования воздуха, основанные на так называемом цикле Карно, также используют принцип теплового насоса для отопления или горячей воды. Суть этого цикла — движение вещества (рабочей жидкости) вдоль замкнутой системы и изменение агрегатного состояния от жидкого до газообразного и наоборот.

Во время перехода выделяется огромное количество энергии или поглощения.

Для пояснения на более доступном языке мы перечислим основные элементы, которые включают устройство теплового насоса:

  • компрессор;
  • теплообменник, в котором рабочая среда переходит в газообразное состояние (испаритель);
  • теплообменник, в котором рабочая среда конденсирована (конденсатор);
  • Расширительный клапан (уменьшение);
  • средства контроля и автоматизации;
  • медные трубы.

Вещество, которое кипит при низких температурах — фреон — появляется как рабочее вещество.

Он циркулирует через трубу в виде жидкости, сначала поступает в испаритель. После взаимодействия с хладагентом от внешнего источника (воздух, вода, почва) рабочая жидкость испаряется и продолжает движение в виде газа. В этот момент давление в системе низкое.

Весь цикл цикла отражает принципиальную схему теплового насоса:

Когда компрессор опускается, фреон перемещается под давлением ко второму теплообменнику, где он должен конденсироваться и передавать полученное тепло в воду, что восстанавливает текущее состояние.

Кроме того, рабочая жидкость поступает в расширительный клапан, давление снова падает и продолжает путь испарения. Цикл закончен.

Тепловые насосные установки для дома могут производить хладагент с температурой 55-60 ° C, что достаточно для обогрева помещений с радиаторами или теплыми полами.

В то же время вся система отопления использует электроэнергию для этих целей:

  • компрессорный адаптер;
  • вращение вращающихся контуров внешних и внутренних цепей;
  • Средства автоматизации и контроля.

Оказалось, что при потреблении 1 кВт электроэнергии работа теплового насоса может перемещаться извне до 5 кВт тепловой энергии, поэтому эффективность вымысла составляет 500%.

Тепловой насос воздух-воздух

Теоретически, каждая среда с температурой выше абсолютного нуля (минус 273 ° C) имеет тепловую энергию.

Таким образом, его можно извлечь, тем более, что это не сложно сделать при температуре окружающей среды минус 10-30 ° С.

Для этой цели используется воздушный тепловой насос, который отводит тепло от внешней среды и перемещается внутри частного дома.

Это самый доступный способ для цены на оборудование и затраты на установку, он также наименее эффективен. Чем больше морозов на улице, тем меньше тепла вы можете получить. Принцип работы системы показан на рисунке:

Внешний блок теплового насоса воздуха похож на тот же блок разделительной системы, но в нем нет компрессора. Остальная часть представляет собой только плоский теплообменник и вентилятор, задачей которого является увеличение интенсивности процесса путем прокачки большого количества воздуха через пластины.

Водяной / водяной тепловой насос

Более эффективным вариантом является водяной водяной тепловой насос.

Он рисует самое близкое водное тело от тепловой энергии, если оно находится на расстоянии до 100 м от дома.

Вычисление мощности теплового насоса

Другой, более распространенный способ — нагревать грунтовые воды через углубление. На самом деле для углублений требуется 2: один для перекачивания воды, другой для сброса. Ниже приведены диаграммы тепловых насосов, которые работают в соответствии с этим принципом:

Здесь есть несколько оттенков.

Воду из отверстия необходимо очистить, прежде чем нанести на нее теплообменник, а шланги должны быть установлены ниже глубины замерзания почвы. Другое дело — контур дна озера заполнен антифризом (пропиленгликолем), который служит посредником между водой и хладагентом.

Это важно.

Способность обеспечить частный дом тепловой энергией в этом случае зависит от производительности скважины и количества воды в пруду. Существуют также возможности погрузить внешний контур в проточную воду реки или канализационную септик.

Существуют также геотермальные тепловые насосы, принцип работы которых ничем не отличается от предыдущих типов устройств, а только тепло от почвы на глубине, где температура всегда одна и та же — плюс 7 Q.

С этой целью горизонтальный контур трубки, которая занимает большую площадь, зарывается в землю, или геотермальные зонды опускаются в скважины глубиной 25 м. В обоих случаях антифриз используется в качестве хладагента.

Они считают, что работа теплового насоса, который производит тепло от земли, является наиболее стабильной и эффективной. Однако покупка и установка такого оборудования очень дорогостоящая, и местные мастера ремесел редко прибегают к реализации этого варианта.

Как мне построить тепловой насос дома?

Поскольку термодинамический расчет теплового насоса для большинства отечественных мастеров является самозанятым, мы не будем здесь его приводить.

Наша миссия — представить несколько операционных моделей, чтобы любой энтузиаст мог взять один из них в качестве основы для создания вашего ребенка.

Следует отметить, что тепловой насос, спроектированный и составленный из его рук, будет по-прежнему отдаленным, если бы не производственные усилия и много времени для подавляющего большинства обычных пользователей.

Самый простой тепловой насос из старого холодильника описан в статье «Инженер» за 2006 год.

Он установлен как нагреватель для небольшой комнаты или теплицы. Кстати, независимо от того, насколько сильный самодельный холодильник, даже для небольшого дома, будет недостаточно, чтобы нагреть, но для одной комнаты — совсем немного. Решение реализовано двумя способами: внутреннее автоматическое отключение разобрано и все устройства подключены непосредственно к непрерывной работе. В первом случае в помещении установлен старый холодильник, конструкция насоса показана на рисунке:

Снаружи есть две воздуховоды и сбой в передней двери.

Воздух через верхний канал поступает в морозильник, охлаждается и падает на нижний воздуховод, чтобы увеличить плотность. Затем выходит тело холодильника, перемещаемое верхним током. Комната нагревается от теплообменника на задней стенке блока. Другой способ сделать тепловой насос своими руками — это же просто, вам нужно построить холодильник во внешней стене, как показано на схеме:

Внутренний нагреватель от радиатора может работать до наружной температуры минус 5 ° C, но не ниже.

Тепловой насос от кондиционера

Современные сплит-системы, особенно инверторы, успешно выполняют функции одного и того же теплового насоса воздух-воздух.

Их проблема в том, что эффективность работы падает с наружной температурой, даже так называемый зимний комплект не спасает.

Домашние мастера подходили к вопросу: самозаменяемые тепловые насосы состояли из кондиционера, который нагревает тепло проточной воды из скважины. Фактически, от кондиционера воздуха только компрессор, иногда внутренний блок, который играет роль фанкойла.

Как правило, компрессор можно приобрести отдельно.

Для нагрева воды (конденсатора) необходимо заменить теплообменник. Медная трубка с толщиной стенки 1-1,2 мм, длиной 35 м, намотана в катушке диаметром 350-400 мм или баллоном. После этого винты фиксируются перфорированным углом, а затем вся конструкция помещается в стальной контейнер с сантехническими трубами.

Компрессор из сплит-системы подключается к нижнему входу конденсатора, а контрольный клапан подключается к верхней части.

Точно так же образуется испаритель, так как он будет соответствовать простой пластиковой бочке. Кстати, вместо самодельных емкостных теплообменников вы можете использовать заводские теплообменники, но это не будет дорого.

Сам узел насоса не слишком сложный, но важно, чтобы мы могли правильно и качественно припаять швы медных труб.

Даже для зарядки системы Freon потребуются мастер-услуги, вы не станете специальной покупкой аксессуаров. Далее — скорость регулировки и пуска теплового насоса, который не всегда улучшается. Возможно, для достижения результатов потребуется много работы.

вывод

Конечно, отопление дома с тепловым насосом — мечта многих домовладельцев.

К сожалению, затраты на заводы слишком высоки, и они могут иметь дело с производственными единицами ручной работы. А потом достаточно часто хватает только на горячую воду, отопление не идет. Если все было так просто, у нас был внутренний тепловой насос в каждом доме, но пока он все еще недоступен для широкого круга пользователей.

На страницах материалов: http://cotlix.com

Всегда ли эффективен тепловой насос?

1. Сколько стоит?

Многие заказчики, знающие о тепловом насосе понаслышке, не имеют представления о его реальной стоимости, полагая, что затраты на его устройство будут сопоставимы с затратами на покупку привычного газового котла.

В таких случаях их желание установить тепловой насос может исчезнуть тотчас же после того, как он узнает, во что это ему примерно обойдется.

Разумеется, точную цену на предпроектной стадии никто определить не сможет, потому что цена эта зависит от множества факторов, численные значения которых станут известными в процессе проектирования.

Тем не менее, порядок цифр уже известен, и потому рекомендуется на самом начальном этапе проектирования предупредить заказчика, что в результате применения отопительного теплового насоса стоимость здания увеличится примерно на 0,7…

1,1 доллара па каждый Ватт тепловой мощности теплового насоса. Понятно, что чем здание больше, тем этот удельный показатель меньше.

После получения этой информации заказчик, который всегда желает знать, во что ему обойдется квадратный метр строящегося здания, начнет вычислять удорожание строительства, вызванное применением теплового насоса.

Если тепловая защита дома не выполнена должным образом, и удельная тепловая мощность отопительной системы, отнесенная к одному квадратному метру общей площади дома, составляет, например, 80 Вт/м2, то и удорожание будет выражаться примерно тем же числом, но уже в единицах измерения долл./м2.

Таким образом, в дом площадью 400 м2 с отопительным тепловым насосом придется дополнительно вложить (80 х 400) около 30 тыс. долларов. Если этот дом хорошо утеплить и довести удельную тепловую мощность системы отопления до 40 Вт/м2, то и дополнительные затраты на установку теплового насоса можно сократить почти вдвое.

Утеплить дом тоже недешево, но выполненное в процессе строительства утепление сэкономит деньги в течение многих лет эксплуатации, в то время как дорогой тепловой насос в работе обойдется еще дороже.

Поэтому устанавливать отопительный тепловой насос в плохо утепленном доме не рекомендуется.

2. От чего зависит эффективность эксплуатации

2.1. Коэффициент преобразования

Коэффициент преобразования теплового насоса выражается через отношение величины теплового потока Q, полученной в конденсаторе тепловой энергии к затраченной в компрессоре электрической мощности N.

Чем больше коэффициент преобразования, тем эффективнее тепловой насос.

Обычно отопительные тепловые насосы работают с коэффициентом преобразования, значения которого лежат в интервале 3,5…5. Тепловые насосы, работающие с коэффициентом преобразования 3 и ниже, считаются неэффективными, и такая работа, если в этом есть необходимость, допустима лишь в течение относительно короткого промежутка времени, несмотря па то, что при этом получено в три раза больше тепла, чем затрачено электрической энергии.

» Принцип расчета и подбора тепловых насосов

На самом деле, сопоставлять расходы тепловой и электрической энергии только по их количеству некорректно, потому что их качественные характеристики неадекватны, и для выработки одного киловатт-часа электроэнергии на тепловой электростанции нужно втрое больше топлива, чем на производство такого же количества тепла в котельной.

На рис. 1 показано, что при коэффициенте преобразования теплового насоса, равном 2,5, количество тепловой энергии, поступающей в дом для его отопления, меньше энергии топлива, которое сжигают на электростанции, чтобы получить нужное для теплового насоса количество электроэнергии. В этом случае тепловой насос не может считаться энергосберегающим оборудованием, потому что его применение приводит к увеличению расхода топлива в энергетической системе.

Любой котел с КПД бо­лее 83% будет энергетически более эффективен.

При работе теплового насоса с коэффициентом преобразования, равном, например, 5, удается получить намного больше тепла, чем содержится в топливе (рис.2).

С учетом всех этих особенностей преобразования энергии в тепловых насосах, в декабре 2008 года Европейским парламентом принята Директива по ис­пользованию возобновляемых источников энергии (Directive on the Use of Renewable Energy Sources), которая не допускает использования тепловых насосов с коэффициентом преобразования, равном 2,875 и ниже.

Величина коэффициента преобразования теплового насоса зависит от разности температур кипения холодильного агента в испарителе и его конденсации в конденсаторе. Чем меньше эта разность, тем выше коэффициент преобразования.

Температура кипения зависит от температуры окружающей среды, используемой в качестве источника теплоты для теплового насоса, и, проектируя систему теплоснабжения с тепловым насосом, инженер не имеет возможности изменить эту температуру.

Зато, выбирая температуру конденсации, проектировщик должен задаться достаточно низкой температурой. Поэтому обычные для водяных отопительных систем температуры теплоносителя 95-70 °С никогда не применяют в системах с тепловыми насосами.

Наиболее экономичными по расходу энергии являются отопительные системы, например, системы с обогревом по­ла, в которых циркулирует вода с температурой ниже 40 оС.

Теоретический коэффициент преобразования идеального теплового насос вычисляется по формуле Карно:

ε=T2 /(T1 – T2), (2)

где T1 — температура конденсации;

T2 — температура кипения холодильного агента, выраженные в градусах Кельвина.

Если бы тепловой насос был вполне совершенным, то при температуре кипения +5°С (Т2 = 278 К) и при температуре конденсации 55°С (T1= 358 К) он мог бы работать с коэффициентом преобразования, равным 5,56.

На самом деле, коэффициент преобразования будет меньше, потому что вполне совершенных машин не бывает, и степень отклонения реального коэффициента преобразования от теоретически возможного зависит от множества факторов.

К ним относятся физические размеры теплообменных аппаратов, свойства холодильного агента, особенности процесса сжатия в компрессоре и многое другое.

В литературе имеется немало формул для расчета коэффициента преобразования теплового насоса, но все они неточны, и пользоваться ими в практических расчетах затруднительно, да и не имеет смысла, поскольку в полных каталогах производителей тепловых насосов всегда можно найти величины тепловой и электрической мощности любого серийного агрегата при различных температурных условиях.

Отношение этих величин и есть коэффициент преобразования.

Знать температуры кипения и конденсации холодильного агента для проектировщика отопительной системы не столь важно, как располагать информацией о температурах теплоносителя, охлажденного в испарителе или нагретого в конденсаторе. Поэтому в каталогах тепловых насосов «вода-вода» приводятся значения тепловых и электрических мощностей тепловых насосов с учетом именно этих температур.

На рис.3 в качестве примера приведён график, составленный на основе анализа каталожных характеристик одной из серийных моделей теплового насоса.

На графике отображена зависимость коэффициента преобразования от температур теплоносителей на выходе из испарителя и конденсатора.

Другой график (рис. 4), построенный на основе каталожных характеристик конкретного модельного ряда тепловых насосов «воздух-вода», отражает зависимость коэффициента преобразования теплового насоса от температуры теплоносителя на выходе из конденсатора и от температуры наружного воздуха.

Коэффициент преобразования теплового насоса является важнейшим критерием его энергетической эффективности, но для владельца здания важно знать о том, как эта эффективность отразится на его финансовых затратах.

И здесь уже главную роль будут играть тарифы.

2.2. Тарифы на энергоносители

Каким бы эффективным ни был тепловой насос, степень его привлекательности для заказчика зависит не столько от степени его технического совершенства или схемы использования, сколько от тарифной политики государства.

Затраты на электрическую энергию, необходимую для работы теплового насоса, будут меньше, чем затраты на покупку природного газа или тепловой энергии, которые могли бы применяться для традиционных отопительных систем, если соблюдается неравенство:

Тэ<(ε /η).Тт, (3)

где Тэ — тариф па электрическую энергию;

Тт — тариф на один из традиционных энергоносителей;

ε — коэффициент преобразования теплового насоса;

η — коэффициент полезного действия традиционного генератора тепла.

Для того, чтобы можно было применить формулу 3, нужно, чтобы тарифы Тэ и Тт были выражены в одинаковых единицах измерения. Обычно тариф на газ выражают в грн/м3, а тариф на тепловую энергию в грн/Гкал, в то время как тарифы на электрическую энергию всегда выражают в грн/кВт ч.

Для возмож­ности сопоставления тарифов удобно пользоваться следующими зависимостями:

1 грн/м3 = 0,106 грн/кВт. ч ;

100 грн/Гкал = 0,086 грн/кВт. ч.

Пример 1

В односемейном доме система отопления получает тепло от газового котла, работающего с КПДη =0,9. Выгодно ли применить в этом доме тепловой насос, который будет работать с коэффициентом преобразования 3,5, если действующий тариф на электроэнергию составляет 0,7 грн/кВт. ч, а на газ — 1,5 грн/м3?

Пересчитаем тариф на газ:

1,5 грн/м3 = 1,5 . 0,106 = 0,159 грн/кВт. ч) и вычислим правую часть неравенства 3:

Сопоставим теперь левую и правую части неравенства 3:

Поскольку неравенство 3 не выполняется, замена газового котла тепловым насосом при указанных тарифах невыгодна и приведет к увеличению затрат на энергоносители.

Пример 2

Ожидается, что через несколько лет тариф на газ удвоится и составит 3 грн/м3, а тариф на электрическую энергию увеличится на 20% и составит 0,84 грн/кВт. ч.

Выгодна ли будет эксплу­атация теплового насоса, описанного в примере 1, в новых условиях?

Да выгодна, потому что неравенство 3 будет выполняться:

(3,5 /0,9) . (3 . 0,106) = 1,24;

Пример 3

В здании школы система отопления получает тепло из городской тепловой сети по тарифу 200 грн/Гкал, причем к показаниям теплосчетчика теплоснабжающая организация добавляет 15% на неучтенные потери тепла на участке тепловой сети, принадлежащем абоненту.

Уменьшатся ли расходы школы на теплоносители после установки теплового насоса, который будет работать с коэффициентом преобразования 3,2, если тариф на электроэнергию составляет 0,25 грн/кВт. ч?

Пересчитаем тариф на тепловую энергию:

200 грн/Гкал = 2 . 0,086 = 0,172 грн/кВт. ч

и вычислим правую часть неравенства 3, полагая, что дополнительные 15-процентные потери адекватны условному значению КПДη = 0,85:

0,25 < 0,648.

Неравенство 3 выполняется, а это означает, расходы школы на теплоносители после установки теплового насоса уменьшатся.

Примеры показывают, что при отсутствии тарифных перекосов затраты на энергоносители при использовании эффективных тепловых насосов будут меньше, чем при применении обычных источников тепла.

Но заказчика обычно интересует, сможет ли снижение эксплуатационных расходов со временем компенсировать дополнительные единовременные затраты, связанные с приобретением и установкой теплового насоса, а, если сможет, то как скоро.

3. Срок окупаемости

Срок окупаемости дополнительных капитальных затрат определяется, как правило, в результате технико-экономического расчета, выполняющегося на основе проектных проработок объекта, на котором предполагается использование теплового насоса. Но в данном случае, речь не идет о конкретном объекте, и потому здесь уместен самый общий анализ, в результате которого заказчик сможет оценить возможный срок окупаемости на предпроектной стадии.

Экономия эксплуатационных расходов на энергоносители Э, грн/год, при применении теплового насоса может быть вычислена по формуле:

Э = q . (Тт/η -Тэ/ε), (4)

где q — количество кВт. часов тепловой энергии, необходимое для отопления здания л течение одного отопительного периода, а значение остальных символов в формуле такое же, как и в неравенстве 3.

Величину q можно определить по формуле:

q=10-3 . 24 . N . S/(tB — tH), (5)

где N — тепловая мощность, Вт, отопительной системы;

S — число граду со- суток отопительного периода;

tB — tH — разность температур внутреннего и наружного воздуха.

Часть уравнения 5, а именно 10-3 . 24 . S/(tB — tH) характеризует климат района, и для Украины эта величина близка к 2.

Для нашего самого общего анализа допустимо не уточнять это зна­чение, и тогда:

Единовременные капитальные затраты К, грн, на приобретение и установку теплового насоса в соответствии с рекомендациями раздела 2.1 могут быть предварительно оценены по формуле:

К = 0,9 . V . N,(7)

где V — валютный курс, грн/USD;

N — тепловая мощность, Вт, отопительной системы.

Простой срок окупаемости С, лет, может быть определен по формуле:

С = К/Э = 0,9. V. N/, (8)

Подставив вместо величины q ее приближенное значение из формулы 6, получим:

С = 0,45 . V/(Тт/η-Тэ/ε), (9)

Эта формула для приблизительного срока окупаемости теплового насоса, привязана к его коэффициенту преобразования и к чисто экономическим показателям, а именно к тарифам и валютному курсу гривны.

Пользуясь этой формулой, определим па примерах сроки окупаемости некоторых тепловых насосов.

Пример 4

Определить приблизительный срок окупаемости теплового насоса из примера 2,если валютный курс составляет 7,7грн/USD.

Срок окупаемости рассчитывается по формуле 9:

С = 0,45 . 7,7 /(3 . 1,06/0,9-0,84/3,5) = 14,4 года.

Пример 5

Определить приблизительный срок окупаемости теплового насоса из примера 3,если валютный курс составляет 6,5 грн/USD.

С = 0,45 . 6,5 /(0,172/0,85-0,25/3,2) = 23,6 года.

Примеры 4 и 5 показывают, что сроки окупаемости оказались не слишком привлекательными для инвестора, для которого пятилетний период возврата вложенных средств является предельно большим отрезком времени.

Но вдумчивый инвестор с помощью преобразованной формулы 9 может решить обратную задачу:

Пример 6

Несмотря на продолжительный срок окупаемости затрат в тепловой насос, владелец односемейного дома, описанного в примерах 1,2 и 4, понимая, что цены на топливо постоянно растут, решил опре­делить, при каком тарифе на газ срок окупаемости не превысит 5 лет, если все прочие показатели из примера 4 останутся неизменными.

Преобразованную формулу 9 можно представить в виде:

(0,45 . V/C + Tэ/ε).

Подставив в нее С = 5 и исходные данные из примера 4, получим:

ТТ = 0,9 . (0,45 . 7,7 / 5 + 0,84 /3,5) = 0,839 грн/кВт. ч = 7,9 грн/м3.

Результаты расчета, выполненного в примере 6, весьма показательны. С учетом валютного курса гривны полученная величина тарифа соответствует стоимости газа около 1000 долларов за 1000 м3.

Примерно по такой цене покупают газ граждане Дании и многих других европейских стран . Уже упомянутый вдумчивый инвестор быстро сообразит, что европейские цены очень скоро придут в Украину, и, при наличии необходимых средств, вероятно, все же примет решение применить в своем доме тепловой насос.

4. Некоммерческая выгода

Не одними только деньгами порою определяется выбор того или иного технического решения. Если говорить о тепловом насосе, то, по крайней мере, три обстоятельства, прямого отношения к коммерческим выгодам не имеющие, могут послужить причиною благосклонного к нему отношения.

Первое из них — это более высокая степень энергетической независимости объекта.

Можно было бы говорить здесь об автономном отоплении, если бы этот термин апологеты газовых котлов не присвоили совершенно безосновательно системам, привязанным к газопроводу.

На самом деле, полностью автономные отопительные системы не существуют, и даже так называемые «пассивные» дома, утепленные столь тщательно, что для поддержания внутри них комфортной температуры зимой достаточно внутренних тепловыделений, не могут считаться вполне автономными, потому что источ­никами тепла в них является бытовое оборудование, работающее от системы электроснабжения.

Вместе с тем, тепловой насос, использующий энергию окружающей среды, способен обеспечить более высокую степень энергетической независимости здания по сравнению с газовым котлом, получающим топливо из месторождений, расположенных за много тысяч километров от потребителя.

Конечно, остается зависимость от системы электроснабжения здания, но электрическая энергия, в отличие от природного газа, будет существовать пока не исчезнет цивилизация, а проблемы, связанные с возможностью временного отключения энергии, могут быть при необходимости устранены установкой резервных источников, например, дизель-генераторов.

Еще одна некоммерческая выгода от применения теплового насоса состоит в более высокой степени комфорта, который может быть создан в здании, где установлено это оборудование, при помощи которого можно не только oбогревать помещения зимой, но и охлаждать их летом.

Впрочем, в данном случае, выгоду от дополнительного комфорта вполне можно выразить, и в денежных единицах. В зданиях с кондиционированием удорожание, связанное с использованием теплового насоса, можно определить по формуле 7, если дополнительно ввести в нее понижающий коэффициент.

Великое разнообразие систем кондиционирования не позволяет однозначно определить величину этого коэффициента, но можно предположить, что в любом случае он будет не больше 0,6, и тогда сроки окупаемости, рассчитанные по формуле 9, окажутся гораздо более привлекательными.

И наконец, нельзя не упомянуть о таком важном некоммерческом факторе, каким является престижность. Тепловой насос стал модным в паше время, а поклонники современной моды, в том числе и технологической, как известно, готовы тратить любые деньги, чтобы удержаться на гребне модной волны.

Можно лишь пожелать им удачи на этом поприще, потому что их удача в этом случае идеально впишется в реализацию государственной стратегии эффективного использования энергии.

В англоязычных изданиях, в том числе и в тех, которые переведены на русский язык, коэффициент преобразования теплового насоса обозначают английской аббревиатурой СОР -coefficient of performance, что дословно означает «коэффициент эксплуатационных качеств".

При условии, что теплотворная способность природного газа равна 8000 ккал/м3.

Нет ничего удивительного в том, что Украина пока отстает от Европы в области применении тепловых насосов.

В этом отставании виновата не наша косность. Если бы в Европе был дешевый газ, тепловые насосы и там до сих пор, как и у нас, оставались бы полем деятельности немногих энтузиастов.

http://ivik.donetsk.ua

Cодержание:

Тепловой насос: принцип работы — особенности и виды

1. Откуда насос берет тепло?
2. Система отопления с тепловым насосом
3. Примерный расчет теплопроизводительности
4. Виды тепловых насосов
5. Преимущества тепловых насосов
6. Некоторые особенности эксплуатации насосов

Такой агрегат как тепловой насос принцип работы имеет сходный с бытовыми приборами – холодильником и кондиционером.

Примерно 80% своей мощности он заимствует у окружающей среды. Насос перекачивает тепло с улицы в помещение. Его работа подобна принципу функционирования холодильника, отличается только направление переноса тепловой энергии.

Например, для охлаждения бутылки с водой люди ставят ее в холодильник, затем бытовой прибор частично «забирает» у этого предмета тепло и теперь, по закону сохранения энергии должен его отдать.

Но куда? Все просто, для этого в холодильнике имеется радиатор, как правило, находящийся на его задней стенке. В свою очередь радиатор, нагреваясь, отдает тепло помещению, в котором стоит.

Таким образом, холодильник отапливает комнату. До какой степени она прогревается, можно почувствовать в небольших магазинах жарким летом, когда включено несколько холодильных установок.

А теперь немного фантазии.

Предположим, что в холодильник постоянно подкладываются теплые предметы, и он обогревает комнату или его расположили в оконном проеме, открыли дверцу морозильной камеры наружу, при этом радиатор находился в помещении. В процессе своей работы, бытовой прибор, охлаждая воздух на улице, одновременно будет переносить тепловую энергию, которая есть снаружи, в здание. Точно такой имеет тепловой насос принцип действия.

Откуда насос берет тепло?

Функционирует тепловой насос, благодаря эксплуатации природных низкопотенциальных источников тепловой энергии, среди которых:

  • окружающий воздух;
  • водоемы (реки, озера, моря);
  • грунт и грунтовые артезианские и термальные воды.

Система отопления с тепловым насосом

Когда для обогрева используется тепловой насос — принцип работы его основан на интеграции в отопительную систему.

Она состоит из двух контуров, к которым добавляется третий, представляющий собой конструкцию насоса.

Теплоноситель, забирающий на себя тепло из окружающей среды, циркулирует по внешнему контуру. Он попадает в испаритель насоса и отдает хладагенту примерно 4 -7 °C, притом, что его температура кипения равна -10 °C.

Состоит функциональный контур теплового насоса из:

  • испарителя;
  • хладагента;
  • электрического компрессора;
  • конденсатора;
  • капилляра;
  • терморегулирующего управляющего устройства.

Процесс, как работает тепловой насос, выглядит примерно так:

  • хладагент после закипания, двигаясь по трубопроводу, попадает в компрессор, работающий при помощи электроэнергии.

    Это устройство сжимает хладагент, находящийся в газообразном состоянии, до высокого давления, что вызывает повышение его температуры;

  • горячий газ попадает в другой теплообменник (конденсатор), в котором тепло хладагента отдается теплоносителю, циркулирующему по внутреннему контуру отопительной системы, или воздуху в помещении;
  • остывая, хладагент переходит в жидкое состояние, после чего проходит сквозь капиллярный редукционный клапан, теряя давление, и затем снова оказывается в испарителе;
  • таким образом, цикл завершился, и процесс готов повториться.

Примерный расчет теплопроизводительности

На протяжении часа через насос по внешнему коллектору проходит 2,5-3 кубометра теплоносителя, который земля в состоянии нагреть на ∆t = 5-7 °C (прочитайте также: «Важно знать: как продумать расчет теплового насоса»).

Q = (T1 — T2) x V, где:
V – расход теплоносителя в час (м3/час);
T1 — T2 - разница температуры на входе и входе (°C) .

Виды тепловых насосов

В зависимости от вида потребляемого рассеянного тепла тепловые насосы бывают:

  • грунт-вода — для их работы в водяной отопительной системе используются закрытые грунтовые контуры или геотермальные зонды, находящиеся на глубине (подробнее: «Геотермальные тепловые насосы для отопления: принцип устройства системы»);
  • вода-вода — принцип работы теплового насоса для отопления дома в данном случае основывается на использовании открытых скважин для забора грунтовых вод и их сброса (прочитайте: «Как подобрать водяной насос для отопления»).

    При этом внешний контур не закольцован, а система отопления в доме – водяная;

  • вода-воздух – устанавливают внешние водяные контуры и задействуют отопительные конструкции воздушного вида;
  • воздух-воздух – для их функционирования используют рассеянное тепло наружных воздушных масс плюс воздушная система отопления дома.

Преимущества тепловых насосов

  1. Экономичность и эффективность.

    Принцип действия тепловых насосов, изображенных на фото, основан не на производстве тепловой энергии, а на переносе ее. Таким образом, КПД теплового насоса должен быть больше единицы. Но как такое возможно? В отношении работы тепловых насосов используется величина, которая называется коэффициентом преобразования тепла или сокращенно КПТ. Характеристики агрегатов данного типа сравнивают именно по этому параметру. Физический смысл величины заключается в определении соотношения между количеством полученного тепла и затраченной на его получение энергии.

    Например, если коэффициент КПТ равен 4,8, это означает, что электроэнергия в 1кВт, затраченная насосом, позволяет получить 4,8 кВт тепла, причем безвозмездно от природы.

  2. Универсальное повсеместное применение.

    В случае отсутствия доступных для потребителей линий электропередач работу компрессора насоса обеспечивают при помощи дизельного привода. Поскольку природное тепло есть повсюду, принцип работы этого устройства позволяет использовать его повсеместно.

  3. Экологичность. Принцип работы теплового насоса основан на малом потреблении электроэнергии и отсутствии продуктов горения.

    Используемый агрегатом хладагент не содержит хлоруглеродов и полностью озонобезопасен.

  4. Двунаправленный режим функционирования.

    Отопление дома. Схема отопления дома с тепловым насосом

    В отопительный период тепловой насос способен обогревать здание, а в летнее время охлаждать его. Тепло, отобранное у помещения, можно применять для обеспечения дома горячим водоснабжением, а, если имеется бассейн, подогревать в нем воду.

  5. Безопасная эксплуатация. В работе тепловых насосов отсутствуют опасные процессы – нет открытого огня, и не выделяются вредные для здоровья человека вещества.

    Теплоноситель не имеет высокой температуры, что делает устройство безопасным и одновременно полезным в быту.

  6. Автоматическое управление процессом обогрева помещений.


Принцип работы теплового насоса, достаточно подробное видео:

Некоторые особенности эксплуатации насосов

Чтобы обеспечить эффективную работу теплового насоса, необходимо соблюдать ряд условий:

  • помещение должно быть качественно утепленным (теплопотери не могут превышать 100 Вт/ м²);
  • тепловой насос выгодно использовать для низкотемпературных отопительных систем.

    Данному критерию соответствует система теплого пола, поскольку ее температура 35-40°C. КПТ во многом зависит от соотношения между температурой входного контура и выходного.

Принцип работы тепловых насосов заключается в переносе тепла, что позволяет получать коэффициент преобразования энергии величиной от 3 до 5.

Другими словами каждый 1 кВт использованной электроэнергии приносит в дом 3-5 кВт тепла.

Тепловой насос — устройство теплопередачи от низкопотенциального источника тепла (низкая температура) до потребителя (теплоносителя) при более высокой температуре.

Термодинамический тепловой насос похож на охлаждающую машину.

Однако, если основной целью охлаждения является получение холода с выбором тепла от любого испарителя масштаба, а конденсатор сбрасывает тепло в окружающую среду, v изображение теплового насоса поворачивается.

Конденсатор — это теплообменник, выделяемый тепло для потребителя, а испарительный теплообменник имеет низкое потенциальное тепло: вторичные источники энергии и (или) возобновляемые источники энергии.

Концепция тепловых насосов была разработана в 1852 году выдающимся британским физиком и инженером Уильямом Томсоном (лорд Кельвином) и еще более сложным и точным австрийским инженером Питером Риттером фон Ритингер (Peter Ritter von Rittinger).

Питер Риттер фон Ритингер считается изобретателем теплового насоса, так как в 1855 году он спроектировал и установил первый известный тепловой насос. Но практическое использование теплового насоса в 40-х годах двадцатого века, когда изобретатель-энтузиаст Роберт С. Вебер (Robert C.

Уэббер) экспериментировал с морозильной камерой.

Когда Вебер случайно коснулся горячей ванны на выходе камеры и обнаружил, что тепло отпущено. Изобретатель думал о том, как использовать это тепло, и решил проложить трубу в котле для нагрева воды.

Если тепловой насос используется для обогрева дома

В результате Вебер дал семье столько горячей воды, сколько они не могут физически использовать, в то время как тепло от нагретой воды было выброшено в воздух.

Это привело к мысли о том, что вода и воздух могут нагреваться от одного источника тепла.

Поэтому Вебер улучшил свое изобретение и начал водить горячую воду в спираль (через катушку) и с помощью небольшого вентилятора, чтобы распределить систему отопления вокруг нагревательного дома.

Со временем идея Вебера заключалась в том, чтобы «нагревать» тепло от земли, где температура во время полета не сильно изменилась. Он положил его в медные трубы Земли, через которые распространялся Фрон, который «собрал» теплоту земли.

Газ загустел, он отремонтировал тепло в доме и снова прошел через катушку, чтобы подобрать следующую часть тепла. В воздухе он вел фанат и устраивался по всему дому. В следующем году Вебер продал свою старую углеродистую печь.

В 1940-х годах тепловой насос стал известен своей эффективностью, но в 1970-х годах он появился в связи с появлением глобального энергосберегающего интереса.

Типы тепловых насосов

В зависимости от принципа работы тепловые насосы подразделяются на сжатие и поглощение .

Сжатие теплового насоса всегда приводится в действие механической энергией (электричество), а поглощающий тепловой насос может также использоваться в качестве источника тепла (с использованием электричества или топлива).

Тепловые насосы подразделяются на:

1) геотермальная энергия (использование тепла земли, грунтовых вод или подземных грунтовых вод);

2) антенна (источником тепловой энергии является воздух);

3) с использованием производной (вторичной) лихорадки (например, теплопровод центрального отопления).

Геотермальный тепловой насос может быть:

— закрытый (горизонтальный, вертикальный или водный);

— открытый тип;

— с прямым теплообменом.

первый Геотермальный тепловой насос

Рис. второй Воздух теплового насоса

Геотермальные тепловые насосы У них такое устройство.

а) закрытый тип :

горизонтально :

Коллектор помещается в кольца или погружается в горизонтальные канавы ниже глубины замерзания грунта (обычно 1,2 м или более).

Этот метод является наиболее рентабельным для жилой недвижимости, при отсутствии недостатка земли для контуров.

вертикальный :

Коллектор размещается вертикально в скважинах глубиной до 200 м. Этот метод используется в тех случаях, когда поверхность земли не позволяет горизонтальную установку контура или угрозу повреждения ландшафта.

вода :

Коллектор имеет отверстие или кольцо в резервуаре (озеро, пруд, река) ниже глубины замерзания.

Это самый дешевый вариант, но есть требования к минимальной глубине и количеству воды в резервуаре для определенного региона.

с прямым теплообменом (DX — сокращенно от английского «прямой обмен» — «прямой обмен»).

В отличие от предыдущих типов, компрессор теплового насоса подается через медные трубки, расположенные:

— вертикально в скважинах длиной 30 м и диаметром 80 мм;

— под углом в полостях длиной 15 м и диаметром 80 мм;

— горизонтально в земле ниже глубины замерзания.

Циркуляция хладагента с компрессором теплового насоса и передача тепла фреона непосредственно через стенку медной трубки с повышенной теплопроводностью обеспечивает высокую эффективность и надежность геотермальной системы отопления.

б) открытый тип :

В такой системе используется вода, которая циркулирует непосредственно через систему геотермального теплового насоса как жидкость для теплообмена с открытым циклом, что означает, что вода возвращается к земле после прохождения через систему.

Этот вариант может быть реализован на практике только в том случае, если имеется достаточное количество относительно чистой воды и при условии, что такой метод использования грунтовых вод не запрещен законом.

Рис. третий Схема компрессорного теплового насоса : 1 — конденсатор; 2 — газ; 3 — испаритель; 4 — компрессор

Промышленные модели тепловых насосов в соответствии с типом охлаждающей жидкости во входном и выходном контурах насоса разделены на восемь типов: «поток», «вода-вода», «воздух-вода», «воздух-воздух», «вода-воздух», воздух »,« фреон-вода »,« фреон-воздух ».

Тепловые насосы могут использовать тепло воздуха из комнаты при нагревании приточного воздуха (рекуператоры).

первый

Отделяя тепло от воздуха

Эффективность и выбор конкретного источника тепловой энергии сильно зависят от климатических условий, особенно если источник тепла находится в воздухе.

Фактически, этот тип более известен как кондиционер. В жарких странах таких устройств десятки миллионов. Для северных стран наиболее важным является зимнее отопление. Системы воздух-воздух и воздух-воздух также используются зимой при температурах до минус 25 градусов, некоторые модели до сих пор работают до -40 градусов. Однако их эффективность низкая, примерно в 1,5 раза выше, чем стоимость энергии, а для отопительного сезона она в среднем в 2,2 раза по сравнению с электронагревателями.

В случае тяжелых морозильников используется дополнительный нагрев. Когда мощность основной системы отопления с тепловыми насосами недостаточна, включены дополнительные источники тепла. Такая система называется двойственной.

2. Извлечение тепла из горных пород

Камень требует бурения скважины на достаточной глубине (100-200 метров) или более из таких скважин. U-образная нагрузка падает в отверстие с двумя контурными пластиковыми трубами. Трубы заполнены антифризом.

По экологическим причинам это 30% -ный раствор этилового спирта. Вода естественным образом заполнена подземными водами, и вода течет от тепла к теплу от тепла.

Если длина отверстия недостаточна или если он пытается получить сверхвысокую мощность от земли, эту воду и даже замораживание можно заморозить, что ограничивает максимальную тепловую мощность этих систем. Это температура возвращаемого антифриза и служит одним из индикаторов схемы автоматизации.

Приблизительно 1 метр работает 50-60 Вт тепловой мощности. Таким образом, для установки мощности теплового насоса мощностью 10 кВт требуется глубина около 170 м. Невозможно бурить глубже 200 метров, меньше делать больше скважин на глубине от 0 до 10 метров друг от друга. Даже для относительно небольшого дома площадью 110-120 м2 с низким энергопотреблением срок погашения составляет 10-15 лет.

Почти все существующие подразделения на рынке действуют летом, в то время как тепло (в основном солнечная энергия) берется из комнат и рассеивается в камень или грунтовые воды. В скандинавских странах каменистый гранитный гранит служит огромным радиатором, который получает тепло летом (день) и рассеивает его зимой (ночью).

Кроме того, тепло постоянно поступает из глубин земли и из грунтовых вод.

3. Извлечение тепла из земли

Наиболее эффективные, но и самые дорогие схемы включают сбор тепла от земли, где температура не меняется в течение года на глубине нескольких метров, что позволяет устанавливать почти независимо от времени. Что касается полугодовых приборов в Швеции в 2006 году, то 50000 финских и норвежских лет были установлены на высоте 70000 г. При использовании в качестве источника заземляющей линии циркуляции тепловой энергии Земли, застывшей в земле на 30-50 см при замораживании почвы в этом область.

На практике — на 0,7 — 1,2 метра. Минимальное рекомендуемое расстояние между коллекторскими трубами составляет 1,5 метра,

Бурение не является обязательным, но большая площадь требует обширной работы на земле, а трубопровод более подвержен повреждениям. Эффективность такая же, как при выборе тепла из отверстия. Никакой специальной подготовки почвы не требуется. Однако желательно, чтобы участок использовался с влажным душем, но если он сух, контур должен быть длиннее. Приблизительное значение тепловой мощности на 1 м трубопровода: в глине — 50-60 Вт, в песке — 30-40 Вт для умеренной ширины, а на севере меньше.

Таким образом, для установки теплового насоса мощностью 10 кВт требуется длина 350-450 м, для чего требуется участок земли площадью около 400 м2 (20 х 20 м).

При правильном расчете контур мало влияет на зеленые насаждения.

Преимущества и недостатки тепловых насосов

Преимущества тепловых насосов — в первую очередь экономия: для передачи 1 кВтч тепловой энергии в систему отопления требуется установка всего 0,2-0,35 кВтч электроэнергии.

Поскольку преобразование тепловой энергии в электричество на крупных электростанциях происходит с КПД до 50%, эффективность использования топлива при использовании тепловых насосов увеличивается. Требования к системам вентиляции помещений упрощаются и повышается уровень пожарной безопасности. Все системы работают с замкнутыми цепями и не требуют каких-либо эксплуатационных затрат, кроме стоимости электроэнергии, необходимой для работы оборудования.

Рис. четвёртая Схема использования тепла от теплового насоса в доме

пятые Схемы теплового насоса

Еще одним преимуществом тепловых насосов является возможность перехода от режима обогрева к зиме в кондиционировании летом: просто вместо радиатора внешний коллектор соединяет фанкойлы или системы холодного потолка.

Тепловой насос надежен, а работа контролируется автоматизацией.

Во время работы система не требует специального обслуживания, манипуляции не требуют специальных навыков и описаны в инструкции по эксплуатации.

Важной особенностью системы является совершенно индивидуальный характер для каждого потребителя, который является оптимальным выбором стабильного источника низкой потенциальной энергии, расчета коэффициента преобразования, возврата и т. Д.

Тепловой насос компактный (его модуль не превышает размер обычного холодильника) и почти бесшумен.

К 2012 году в Японии более 3,5 миллионов устройств, а в Швеции около 500 000 домов нагревают тепловые насосы.

Недостатками геотермальных тепловых насосов, используемых для отопления, являются высокая стоимость установленного оборудования, необходимость комплексной и радикальной сборки внешних подземных или подводных теплообменников.

Недостатком воздушных тепловых насосов является более низкий коэффициент преобразования тепла, который связан с низкой температурой кипения хладагента во внешнем испарителе воздуха. Общим недостатком тепловых насосов является относительно низкая температура нагретой воды, в большинстве случаев не более +50 ° C ^ +60 ° С, чем выше температура нагретой воды, тем ниже эффективность и надежность теплового насоса.

По мнению профессионалов, работающих в данной сфере, эффективным и экономичным мероприятием считается использование геотермальных источников тепловой энергии – специальных насосов. Их принципиальное устройство позволяет извлекать тепло из окружающей среды, трансформировать его и перемещать к месту применения (детальнее: “Геотермальные тепловые насосы для отопления: принцип устройства системы”).

Коэффициент производительности тепловых насосов, благодаря их характеристикам, достигает 3-5 единиц. Это означает, что при затрате в процессе работы 100 Вт электрической энергии прибором, потребители получают примерно 0,5 кВт мощности обогрева.

Порядок расчета тепловых насосов

  1. Прежде всего, определяют потери тепла, происходящие через ограждающие конструкции постройки (к ним относятся окна, двери, стены, перекрытия). Для этого пользуются следующей формулой:

tвн – температура воздуха внутри здания (°С);

tнар – температура воздуха снаружи (°С);

β – коэффициент дополнительных теплопотерь, зависящий от типа постройки и его географического местоположения. Данный показатель, когда производится расчет теплового насоса, находится в интервале от 0,05 до 0,27;

δі / λі – является расчетным показателем теплопроводности материалов, применяемых при строительстве;

α нар – величина теплового рассеивания наружных поверхностей конструкций ограждения (Вт/ м²х°С);

Qбп – выделение тепла в результате работы бытовых приборов и человеческой деятельности.

tнар.ср – среднеарифметическое значение температур, которые фиксируются у наружного воздуха на протяжении всего отопительного периода;

d – количество дней в отопительном сезоне.

V х17 – ежедневный объем нагрева воды до 50 °С.

После того, как завершен расчет теплового насоса, с учетом полученных данных приступают к выбору данного прибора для обеспечения теплоснабжения и горячего водоснабжения. При этом расчетную мощность определяют, исходя из выражения:

Как правильно сделать расчет теплового насоса, подробное фото и видео


Как правильно сделать расчет теплового насоса, подробное фото и видео

Методы и программы расчета мощности теплового насоса для отопления дома

Использование альтернативных источников получения энергии сегодня представляется первоочередной задачей. Превращение энергии ветра, воды и солнца способно существенно снизить уровень загрязнения окружающей среды и сэкономить финансовые средства, необходимые для реализации технологичных способов получения энергии. В этом плане очень перспективным выглядит использованием так называемых теплонасосов. Тепловой насос – это устройство, способное переносить энергию тепла из окружающей среды внутрь помещения. Метод расчета теплового насоса, необходимые формулы и коэффициенты представлены ниже.

Источники тепловой энергии

Источниками энергии для тепловых насосов могут выступать солнечный свет, тепло воздуха, воды и грунта. В основе процесса лежит физический процесс, благодаря которому некоторые вещества (хладогенты) способны закипать при низких температурах. При таких условиях коэффициент производительности тепловых насосов может достигать 3 и даже 5 единиц. Это означает, что, затратив 100 Вт электроэнергии на работу насоса, можно получить 0,3-0,5 кВт.

Таким образом, геотермальный насос способен полностью отопить дом, однако при условии, что температура уличной среды не будет ниже температуры расчетного уровня. Как рассчитать тепловой насос?

Техника расчета мощности теплового насоса

С этой целью можно использовать специальный онлайн калькулятор расчета теплового насоса либо выполнить расчеты вручную. Прежде, чем определить необходимую для отопления дома мощность насоса вручную, необходимо определить тепловой баланс дома. Вне зависимости от того, для дома какой площади производится расчет (расчет теплового насоса на 300м2 или на 100м2), используется одна и та ж формула:

  • R – это тепловые потери/мощность дома (ккал/час);
  • V – объем дома (длина*ширина*высота), м3;
  • Т – самый высокий перепад между температурами снаружи дома и внутри в холодное время года, С;
  • k – это усредненный коэффициент теплопроводности здания: k=3(4) – дом из досок; k=2(3) – дом из однослойного кирпича; k=1(2) – кирпичный дом в два слоя; k=0,6(1) – тщательно утепленное здание.

Типовой расчет теплового насоса предполагает, что для того, чтобы перевести полученные значения из ккал/час в кВт/час, необходимо разделить ее на 860.

Пример расчета мощности насоса

Расчет теплового насоса для отопления дома на конкретном примере. Предположим, что необходимо обогреть здание площадью 100 м.кв.

Чтобы получить его объем (V), необходимо умножить его высоту на длину и ширину:

Чтобы узнать T, необходимо получить разницу температур. Для этого из минимальных внутренних температур вычитаем минимальные наружные:

Теплопотери здания примем равными k=1, тогда тепловые потери дома будут рассчитаны следующим образом:

Программа расчета теплового насоса предполагает, что расход домом тепловой энергии должен быть переведен в кВт. Переводим ккал/час в кВт:

Таким образом, для отопления дома из двухслойного кирпича площадью 100 м.кв., необходим тепловой насос на 14,5 кВт. Если необходимо произвести расчет теплового насоса на 300м2, то в формулах производится соответствующая подстановка. В данном расчете учтены потребности в теплой воде, необходимой для отопления. Для определения подходящего теплового насоса потребуется таблица расчета теплового насоса, демонстрирующая технические характеристики и производительность той или иной модели.


Прежде, чем определить необходимую для отопления дома мощность насоса вручную, необходимо определить тепловой баланс дома

Как известно, тепловые насосы используют бесплатные и возобновляемые источники энергии: низкопотенциальное тепло воздуха, грунта, подземных, сточных и сбросовых вод технологических процессов, открытых незамерзающих водоемов. На это затрачивается электроэнергия, но отношение количества получаемой тепловой энергии к количеству расходуемой электрической составляет порядка 3–6.

Говоря более точно, источниками низкопотенциального тепла могут быть наружный воздух температурой от –10 до +15 °С, отводимый из помещения воздух (15–25 °С), подпочвенные (4–10 °С) и грунтовые (более 10 °C) воды, озерная и речная вода (0–10 °С), поверхностный (0–10 °С) и глубинный (более 20 м) грунт (10 °С).

Возможны два варианта получения низкопотенциального тепла из грунта: укладка металлопластиковых труб в траншеи глубиной 1,2–1,5 м либо в вертикальные скважины глубиной 20–100 м. Иногда трубы укладывают в виде спиралей в траншеи глубиной 2–4 м. Это значительно уменьшает общую длину траншей. Максимальная теплоотдача поверхностного грунта составляет 50–70 кВт·ч/м2 в год. Срок службы траншей и скважин составляет более 100 лет.

Исходные условия: Необходимо выбрать тепловой насос для отопления и горячего водоснабжения коттеджного двухэтажного дома, площадью 200м 2 ; температура воды в системе отопления должна быть 35 °С; минимальная температура теплоносителя – 0 °С. Теплопотери здания-50Вт/м2. Грунт глиняный,сухой.

Требуемая тепловая мощность на отопление: 200*50=10 кВт;

Требуемая тепловая мощность на отопление и горячее водоснабжение: 200*50*1.25=12.5 кВт

Для обогрева здания выбран тепловой насос WW H R P C 12 мощностью 14,79 кВт (ближайший больший типоразмер), затрачивающий на нагрев фреона 3,44 кВт. Теплосъем с поверхностного слоя грунта (сухая глина) q равняется 20 Вт/м. Рассчитываем:

1) требуемую тепловую мощность коллектора Qo = 14,79 – 3,44 = 11,35 кВт;

2) суммарную длину труб L = Qo/q = 11,35/0,020 = 567.5 м. Для организации такого коллектора потребуется 6 контуров длиной по 100 м;

3) при шаге укладки 0,75 м необходимая площадь участка А = 600 х 0,75 = 450 м2;

4) общий расход гликолевого раствора(25%)

Vs = 11,35·3600/ (1,05·3,7·dt) = 3,506 м3/ч,

dt – разность температур между подающей и возвратной линиями, часто принимают равной 3 К.расход на один контур равен 0,584 м3/ч. Для устройства коллектора выбираем металлопластиковую трубу типоразмера 32 (например, РЕ32х2). Потери давления в ней составят 45 Па/м; сопротивление одного контура – примерно 7 кПа; скорость потока теплоносителя – 0,3 м/с.

Съем тепла с каждого метра трубы зависит от многих параметров: глубины укладки, наличия грунтовых вод, качества грунта и т.д. Ориентировочно можно считать, что для горизонтальных коллекторов он составляет 20 Вт/м. Более точно: сухой песок – 10, сухая глина – 20, влажная глина – 25, глина с большим содержанием воды – 35 Вт/м. Разницу температуры теплоносителя в прямой и обратной линии петли при расчетах принимают обычно равной 3 °С. На участке над коллектором не следует возводить строений, чтобы тепло земли пополнялось за счет солнечной радиации. Минимальное расстояние между проложенными трубами должно быть 0,7–0,8 м. Длина одной траншеи составляет обычно от 30 до 120 м. В качестве теплоносителя первичного контура рекомендуется использовать 25-процентный раствор гликоля. В расчетах следует учесть, что его теплоемкость при температуре 0 °С составляет 3,7 кДж/(кг·К), плотность – 1,05 г/см3. При использовании антифриза потери давления в трубах в 1,5 раза больше, чем при циркуляции воды. Для расчета параметров первичного контура теплонасосной установки потребуется определить расход антифриза:

где.t – разность температур между подающей и возвратной линиями, которую часто принимают равной 3 К,

а Qo – тепловая мощность, получаемая от низкопотенциального источника (грунт).

Последняя величина рассчитывается как разница полной мощности теплового насоса Qwp и электрической мощности, затрачиваемой на нагрев фреона P:

Суммарная длина труб коллектора L и общая площадь участка под него A рассчитываются по формулам:

Здесь q – удельный (с 1 м трубы) теплосъем; da – расстояние между трубами (шаг укладки).

При использовании вертикальных скважин глубиной от 20 до 100 м в них погружаются U-образные металлопластиковые или пластиковые (при диаметрах выше 32 мм) трубы. Как правило, в одну скважину вставляется две петли, после чего она заливается цементным раствором. В среднем удельный теплосъем такого зонда можно принять равным 50 Вт/м. Можно также ориентироваться на следующие данные по теплосъему:

* сухие осадочные породы – 20 Вт/м;

* каменистая почва и насыщенные водой осадочные породы – 50 Вт/м;

* каменные породы с высокой теплопроводностью – 70 Вт/м;

* подземные воды – 80 Вт/м.

Температура грунта на глубине более 15 м постоянна и составляет примерно +10 °С. Расстояние между скважинами должно быть больше 5 м. При наличии подземных течений, скважины должны располагаться на линии, перпендикулярной потоку. Подбор диаметров труб проводится исходя из потерь давления для требуемого расхода теплоносителя. Расчет расхода жидкости может проводиться для t = 5 °С. Пример расчета. Исходные данные – те же, что в приведенном выше расчете горизонтальногоколлектора. При удельном теплосъеме зонда 50 Вт/м и требуемой мощности 11,35 кВт длина зонда L должна составить 225 м. Для устройства коллектора необходимо пробурить три скважины глубиной по 75 м. В каждой из них размещаем по две петли из металлопластиковой трубы типоразмера 25 (РЕ25х2.0); всего – 6 контуров по 150 м.

Общий расход теплоносителя при.t = 5 °С составит 2,1 м3/ч; расход через один контур – 0,35 м3/ч. Контуры будут иметь следующие гидравлические характеристики: потери давления в трубе – 96 Па/м (теплоноситель – 25-процентный раствора гликоля); сопротивление контура – 14,4 кПа; скорость потока – 0,3 м/с.

Библиотека статей на профессиональную тему

Тепловые насосы. Расчет, выбор оборудования, монтаж.

4.1. Принцип действия теплового насоса

Использование альтернативных экологически чистых источников энергии может предотвратить назревающий энергетический кризис в Украине. Наряду с поисками и освоением традиционных источников (газ, нефть), перспективным направлением является использование энергии, накапливаемой в водоемах, грунте, геотермальных источниках, технологических выбросах (воздух, вода, стоки и др.). Однако температура этих источников довольно низкая (0–25 °С) и для эффективного их использования необходимо осуществить перенос этой энергии на более высокий температурный уровень (50–90 °С). Реализуется такое преобразование тепловыми насосами (TH), которые, по сути, являются парокомпрессионными холодильными машинами (рис. 4.1).

Низкотемпературный источник (ИНТ) нагревает испаритель (3), в котором хладагент кипит при температуре –10 °С…+5 °С. Далее тепло, переданное хладагенту, переносится классическим парокомпрессионным циклом к конденсатору (4), откуда поступает к потребителю (ПВТ) на более высоком уровне.

Тепловые насосы используют в различных отраслях промышленности, жилом и общественном секторе. В настоящее время в мире эксплуатируется более 10 млн. тепловых насосов различной мощности: от десятков киловатт до мегаватт. Ежегодно парк ТН пополняется примерно на 1 млн. штук. Так, в Стокгольме тепловая насосная станция мощностью 320 МВт, используя зимой морскую воду с температурой +4 °С, обеспечивает теплом весь город . В 2004 г. мощность тепловых насосов, установленных в Европе, составляла 4 531 МВт, а во всем мире тепловыми насосами была получена тепловая энергия эквивалентная 1,81 млрд. м 3 природного газа. Энергетически эффективны тепловые насосы, использующие геотермальные и подземные воды. В США федеральным законодательством утверждены требования по обязательному использованию геотермальных тепловых насосов (ГТН) при строительстве новых общественных зданий. В Швеции 50 % всего отопления обеспечивается геотермальными тепловыми насосами. К 2020 г. по прогнозам Мирового энергетического комитета доля геотермальных тепловых насосов составит 75 %. Срок службы ГТН составляет 25–50 лет. Перспективность применения тепловых насосов в Украине показана в .

Тепловые насосы подразделяют по принципу действия (компрессорные, абсорбционные) и по типу цепи передачи тепла «источник-потребитель». Различают следующие типы тепловых насосов: воздух-воздух, воздух-вода, вода-воздух, вода-вода, грунт-воздух, грунт-вода, где первым указывается источник тепла. Если для отопления используется только тепловой насос, то система называется моновалентной. Если дополнительно к тепловому насосу подключается другой источник тепла, работающий отдельно или параллельно с тепловым насосом, система называется бивалентной.

Рис. 4.1. Схема гидравлическая теплового насоса:

1 – компрессор; 2 – источник теплоты низкого уровня (ИНТ); 3 – испаритель теплового насоса;

4 – конденсатор теплового насоса; 5 – потребитель теплоты высокого уровня (ПВТ);

6 – низкотемпературный теплообменник; 7 – регулятор потока хладагента;

8 – высокотемпературный теплообменник

Тепловой насос с гидравлической обвязкой (водяными насосами, теплообменниками, запорной арматурой и др.) называют тепловой насосной установкой. Если среда, охлаждаемая в испарителе, такая же, как и среда, нагреваемая в конденсаторе (вода-вода, воздух-воздух), то путем изменения потоков этих сред можно изменить режим ТН на обратный (охлаждение на нагрев и наоборот). Если среды – газы, то такое изменение режима называют обратимым пневматическим циклом, если жидкости – обратимым гидравлическим циклом (рис. 4.2).

Рис. 4.2. Схема теплового насоса с обратимым гидравлическим циклом

В случае, когда обратимость цикла осуществляется изменением направления хладагента с помощью клапана обратимости цикла, используют термин «тепловой насос, работающий в обратимом холодильном цикле».

4.2. Низкопотенциальные источники тепла

4.2.1. Низкопотенциальный источник – воздух

Рис. 4.3. Схема теплового насоса «воздух- вода»

В системах кондиционирования широко используются тепловые насосы типа «воздух-вода». Наружный воздух продувается через испаритель, а тепло, отводимое от конденсатора, нагревает воду, используемую для обогрева помещения в помещении (рис. 4.3).

Преимуществом таких систем является доступность низкопотенциалного источника тепла (воздуха). Однако температура воздуха изменяется в большом диапазоне, достигая отрицательных значений. При этом эффективность теплового насоса сильно снижается. Так, изменение температуры наружного воздуха с 7 °С до минус 10 °С приводит к снижение производительности теплового насоса в 1,5–2 раза.

Для подачи воды от ТН к обогреваемым помещениям в них устанавливаются теплообменники, именуемых в литературе «фэнкойлами». Вода к фэнкойлам подается гидравлической системой – насосной станцией (рис. 4.4).

Рис. 4.4. Схема насосной станции:

Р – манометры; РБ – расширительный бак; АБ – аккумулирующий бак; РП – реле протока; Н – насос;

БК – балансный клапан; Ф – фильтр; ОК – обратный клапан; В – вентиль; Т – термометр;

ПК – предохранительный клапан; ТП – теплообменник «фреон–жидкость»; ТХК – трехходовой клапан; КПЖ – клапан подпитки жидкости; КПВ – клапан подпитки воздуха; КВВ – клапан выпуска воздуха

Для повышения точности поддержания температуры в помещении и уменьшения инерционности в гидравлической системе устанавливаются аккумулирующие баки. Емкость аккумулирующего бака может быть определена по формуле :

где – холодопроизводительность ТН, кВт;

– объем охлаждаемых помещений, м 3 ;

– количество воды в системе, л;

Z – количество ступеней мощности ТН.

Если V АБ получится отрицательным, то аккумулирующий бак не устанавливают.

Для компенсации температурного расширения воды в гидравлической системе устанавливают расширительные баки. Расширительные баки устанавливаются на всасывающей стороне насоса. Объем расширительного бака определяется по формуле :

где V сист – объем системы, л;

k – коэффициент объемного расширения жидкости (вода 3,7·10 -4 , антифриз (4,0–5,5)·10 -4);

ΔT – перепад температуры жидкости (при работе только в режиме охлаждения)

ΔT = t окр – 4 °С; при работе в режиме теплового насоса ΔT=60 °С – 4 °С = 56 °С);

Р пред – настройка предохранительного клапана.

Давление в системе (Р сист) зависит от взаимного расположения насосной станции и конечного потребителя (фанкойла). Если насосная станция расположена ниже конечного потребителя, то давление (Р сист) определяют как максимальный перепад высот (в барах) плюс 0,3 бара. Если насосная станция расположена выше всех потребителей, то Р сист = 1,5 бара.

Расширительный бак предварительно накачивается воздухом до давления на 0,1–0,3 бара меньше расчетного, а после монтажа давление доводится до нормы.

Конструкция расширительных баков показана на рис. 4.5.

Тепловые насосы


Источник: IVIK.ua4.1. Принцип действия теплового насоса Использование альтернативных экологически чистых источников энергии может предотвратить назревающий энергетический кризис в Украине. Наряду с поисками и освоением традиционных источников (газ, нефть), перспективным направлением является использование энергии, накапливаемой в водоемах, грунте, геотермальных источниках, технологических выбросах (воздух, вода, стоки и др.). Однако температура этих источников довольно низкая (0–25 °С) и…

Отопление дома. Схема отопления дома с тепловым насосом

В данной статье описаны варианты отопления дома и горячего водоснабжения с помощью теплового насоса, солнечного коллектора и кавитационного теплогенератора. Дана приближенная методика расчета теплового насоса и теплогенератора. Приведены примерная стоимость затрат для обогрева дома с помощью теплового насоса.

Тепловой насос. Конструкция обогрева дома

Чтобы понять его принцип действия можно посмотреть на обычный бытовой холодильник или кондиционер.

Современные тепловые насосы используют для своей работы низкопотенциальные источники тепла землю, грунтовые воды, воздух. И в холодильнике и в тепловом насосе действует один и тот же физический принцип (физики называют такой процесс циклом Карно). Тепловой насос – устройство, которое «выкачивает» тепло из холодильной камеры и выбрасывает его на радиатор. Кондиционер «выкачивает» тепло из воздуха комнаты и выбрасывает ее на радиатор, но находящийся на улице. При этом к теплу, «высосанному» из комнаты, добавляется ещё тепло, в которое превратилась электрическая энергия, потреблённая электродвигателем кондиционера.

Число, выражающее отношение вырабатываемой тепловым насосом (кондиционером или холодильником) тепловой энергии к потребляемой им электрической энергии, специалисты по тепловым насосам называют «отопительным коэффициентом». В лучших тепловых насосах отопительный коэффициент достигает 3-4. То есть на каждый потреблённый электродвигателем киловатт-час электроэнергии вырабатывается 3-4 киловатт-часа тепловой энергии. (Один киловатт-час соответствует 860 килокалориям.) Этот коэффициент преобразования (отопительный коэффициент) напрямую зависит от температуры источника тепла, чем выше температура источника, тем больше коэффициент преобразования.

Кондиционер берёт эту тепловую энергию из воздуха улицы, а большие тепловые насосы «выкачивают» это дополнительное тепло обычно из водоема/подземных вод или грунта.

Хотя температура этих источников гораздо меньше, чем температура воздуха в обогреваемом доме, но и это низкотемпературное тепло грунта или воды, тепловой насос и превращает в высокотемпературное, необходимое для обогрева дома. Поэтому тепловые насосы называют ещё «трансформаторами тепла». (процесс превращения см. ниже)

Примечание: Тепловые насосы не только согревают дома, но и остужают воду в реке, из которой выкачивают тепло. А в наше время, когда реки слишком перегреты промышленными и бытовыми стоками, охлаждать реку очень полезно для жизни в ней живых организмов и рыбы. Чем ниже температура воды, тем больше в ней может раствориться кислорода, необходимого для рыбы. В тёплой воде рыба задыхается, а в холодной блаженствует.Поэтому тепловые насосы очень перспективны в деле спасения окружающей среды от ” теплового загрязнения “.

Но установка системы отопления с помощью тепловых насосов пока слишком дорога, потому что требуются большое количество земляных работ плюс расходных материалов, например, труб для создания коллектора/теплообменника.

Так же стоит помнить что в тепловых насосах, как и в обычных холодильниках, используется компрессор, сжимающий рабочее тело – аммиак или фреон. На фреоне тепловые насосы работают лучше, но фреон уже запрещён к применению из-за того, что он, попадая в атмосферу, выжигает в её верхних слоях озон, защищающий Землю от ультрафиолетовых лучей Солнца.

И все-таки мне кажется, что будущее за тепловыми насосами. Но их, никто пока не производит массово. Почему? Не трудно догадаться.

Если появляется альтернативный источник дешевой энергии, то куда девать добываемый газ, нефть и уголь, кому его продавать. А на что списывать многомиллиардные убытки от взрывов на шахтах и рудниках.

Принципиальная схема обогрева дома с помощью теплового насоса

Принцип действия теплового насоса

В качестве источника низкопотенциального тепла может выступать наружный воздух, имеющий температуру от -15 до +15°С, воздух отводимый из помещения с температурой 15-25°С, подпочвенные (4-10°С) и грунтовые (более 10°C) воды, озерная и речная вода (0-10°С), поверхностный (0-10°С) и глубинный (более 20 м) грунт (10°С). В Нидерландах, например, в городе Херлен (Heerlen) для этих целей используется затопленная шахта. Вода, наполняющая старую шахту, на уровне 700 метров имеет постоянную температуру в 32°C.

В случае использования в качестве источника тепла атмосферного или вентиляционного воздуха, система отопления работает по схеме «воздух-вода». Насос может быть расположен внутри или снаружи помещения. Воздух подается в его теплообменник с помощью вентилятора.

Если в качестве источника тепла используются грунтовые воды, то система работает по схеме «вода-вода». Вода подается из скважины с помощью насоса в теплообменник насоса, а после отбора тепла, сбрасывается либо в другую скважину, либо в водоем. В качестве промежуточного теплоносителя можно использовать антифриз или тосол. Если в качестве источника энергии выступает водоем, на его дно укладывается петля из металлопластиковой или пластиковой трубы. По трубопроводу циркулирует раствор гликоля (антифриз) или тосола который через теплообменник теплового насоса передает тепло фреону.

При использовании в качестве источника тепла грунта, система работает по схеме «грунт-вода». Возможны два варианта устройства коллектора - вертикальный и горизонтальный.

  • При горизонтальном расположении коллектора, металлопластиковых трубы укладывают в траншеи глубиной 1,2-1,5 м или в виде спиралей в траншеи глубиной 2-4 м. Такой способ укладки позволяет значительно уменьшить длину траншей.

Схема теплового насоса при горизонтальном коллекторе со спиральной укладкой труб

1 – тепловой насос; 2 – трубопровод, уложенный в земле; 3 – бойлер косвенного нагрева; 4 – система отопления «теплый пол»; 5 – контур подачи горячей воды.

Однако при укладке спиралью сильно увеличивается гидродинамическое сопротивление, что приводит к дополнительным затратам на прокачку теплоносителя, так же сопротивление увеличивается по мере увеличения длины труб.

  • При вертикальном расположении коллектора трубы укладывают в вертикальные скважины на глубину 20-100 м.

Схема вертикального зонда

Фото зонда в бухте

Установка зонда в скважину

Расчет горизонтального коллектора теплового насоса

Расчет горизонтального коллектора теплового насоса.

q - удельный теплосъем (с 1 м пог. трубы).

  • сухой песок - 10 Вт/м,
  • сухая глина - 20 Вт/м,
  • влажная глина - 25 Вт/м,
  • глина с большим содержанием воды - 35 Вт/м.

Между прямой и обратной петлей коллектора появляется разность температур теплоносителя.

Обычно для расчета ее принимают равной 3°С. Недостатком такой схемы является то, что на участке над коллектором не желательно возводить строений, чтобы тепло земли пополнялось за счет солнечной радиации. Оптимальная дистанция между трубами считается 0,7-0,8 м. При этом длина одной траншеи выбирается от 30 до 120 м.

Пример расчета теплового насоса

Я приведу примерный расчет теплового насоса для нашего экодома, описанного в статье Экодом. Теплоснабжение экодома.

Считается, что для обогрева дома с высотой потолка 3 м, необходимо расходовать 1 кВт. Тепловой энергии на 10 м2 площади. При площади дома 10х10м=100 м2, необходимо 10кВт тепловой энергии.

При использовании теплого пола, температура теплоносителя в системе, должна быть 35°С, а минимальная температура теплоносителя - 0°С.

Таблица 1. Данные теплового насоса Thermia Villa.

Для обогрева здания нужно выбирать тепловой насос мощностью 15,6 кВт (ближайший больший типоразмер), расходующий на работу компрессора 5 кВт. Выбираем по типу грунта теплосъем с поверхностного слоя грунта. Для (влажной глины) q равняется 25 Вт/м.

Рассчитаем мощность теплового коллектора:

Qo - мощность теплового коллектора, кВт;

Qwp - мощность теплового насоса, кВт;

P - электрическая мощность компрессора, кВт.

Требуемая тепловая мощность коллектора составит:

Теперь определим суммарную длину труб:

L=Qo/q, где q - удельный (с 1 м. пог. трубы) теплосъем, кВт/м.

L=10,6/0,025 = 424 м.

Для организации такого коллектора потребуется 5 контуров длиной по 100 м. Исходя из этого, определим необходимую площадь участка для укладки контура.

A=Lхda, где da - расстояние между трубами (шаг укладки), м.

При шаге укладки 0,75 м необходимая площадь участка составит:

Расчет вертикального коллектора

При выборе вертикального коллектора, бурят скважины глубиной от 20 до 100 м. В них погружаются U-образные металлопластиковые или пластиковые трубы. Для этого в одну скважину вставляется две петли, которые заливается цементным раствором. Удельный теплосъем такого коллектора составляет 50 Вт/м.

Для более точных расчетов применяют следующие данные:

  • сухие осадочные породы - 20 Вт/м;
  • каменистая почва и насыщенные водой осадочные породы - 50 Вт/м;
  • каменные породы с высокой теплопроводностью - 70 Вт/м;
  • подземные воды - 80 Вт/м.

На глубинах более 15 м, температура грунта составляет примерно +10°С. Необходимо учитывать, что расстояние между скважинами должно быть больше 5 м. Если в грунте существуют подземные течения, то скважины необходимо бурить перпендикулярной потоку.

Таким образом, при удельном теплосъеме вертикального коллектора 50 Вт/м и требуемой мощности 10,6 кВт длина трубы L должна составить 212 м.

Для устройства коллектора необходимо пробурить три скважины глубиной по 75 м. В каждой из них размещаем по две петли из металлопластиковой трубы всего - 6 контуров по 150 м.

Работа теплового насоса при работе по схеме «Грунт-вода»

Трубопровод укладывается в землю. При прокачивании через него теплоносителя, последний нагревается до температуры грунта. Дальше по схеме вода поступает в теплообменник теплового насоса и отдает все тепло во внутренний контур теплового насоса.

Во внутренний контур теплонасоса закачан хладагент под давлением. В качестве хладагента используется фреон или его заменители, поскольку фреон разрушает озоновый слой атмосферы и запрещен к использованию в новых разработках. У хладагента низкая температура кипения и поэтому когда в испарителе резко снижается давление, он переходит из жидкого состояния в газ при низкой температуре.

После испарителя газообразный хладагент поступает в компрессор и сжимается компрессором. При этом он разогревается, и давление его повышается. Горячий хладагент поступает в конденсатор, где протекает теплообмен между ним и теплоносителем из обратного трубопровода. Отдавая свое тепло, хладагент охлаждается и переходит в жидкое состояние. Теплоноситель поступает в отопительную систему и снова охлаждаясь, передает свое тепло в помещение. Когда хладагент проходит через редукционный клапан,его давление падает, и он снова переходит в жидкую фазу. После этого цикл повторяется.

В холодное время года теплонасос работает как обогреватель, а в жаркое время может использоваться для охлаждения помещения (при этом тепловой насос не подогревает, а охлаждает теплоноситель – воду. А охлажденная вода, в свою очередь может использоваться для охлаждения воздуха в помещении).

В общем случае, теплонасос представляет собой машину Карно, работающую в обратном направлении. Холодильник перекачивает тепло из охлаждаемого объема в окружающий воздух. Если поместить холодильник на улице, то, извлекая тепло из наружного воздуха и передавая его вовнутрь дома, то можно таким нехитрым способом, в какой-то степени, обогревать помещение.

Однако, как показывает практика, одного лишь теплового насоса для снабжения дома теплом и горячей водой недостаточно. Осмелюсь предложить оптимальную, на мой взгляд, схему отопления и горячего водоснабжения дома.

Предлагаемая схема снабжения дома теплом и горячей водой

1 – теплогенератор; 2 – солнечный коллектор; 3 – бойлер косвенного нагрева; 4 – тепловой насос; 5 – трубопровод в земле; 6 – циркуляционный блок гелиосистемы; 7 – радиатор отопления; 8 – контур подачи горячей воды; 9 – система отопления «теплый пол».

Данная схема предполагает одновременное использование трех источников тепла. Основную роль играет в ней теплогенератор (1), тепловой насос (4) и солнечный коллектор (2), которые служат вспомогательными элементами и способствуют снижению затрат потребляемой электроэнергии, как следствие, и повышению эффективности нагрева. Одновременное использование трех источников нагрева практически полностью исключает опасность размерзания системы.

Ведь вероятность выхода из строя одновременно и теплогенератора, и теплового насоса, и солнечного коллектора ничтожно мала. На схеме показаны два варианта обогрева помещений: радиаторы (7) и «теплый пол» (9). Это не значит, что надо использовать оба варианта, а лишь иллюстрирует возможность использования и одного и второго.

Принцип работы схемы отопления

Теплогенератор (1) подает нагретую воду в бойлер (3) и контур, состоящий из радиаторов отопления (7). Также в бойлер поступает нагретый теплоноситель от теплового насоса (4) и солнечного коллектора (2). Часть нагретой тепловым насосом воды также подается на вход теплогенератора. Смешиваясь с «обраткой» обогревающего контура, она повышает ее температуру. Это способствует более эффективному нагреву воды в кавитаторе теплогенератора. Нагретая и накопленная в бойлере вода подается в контур системы «теплый пол» (9) и контур подачи горячей воды (8).

Конечно, эффективность данной схемы будет неодинаковой в различных широтах. Ведь солнечный коллектор будет иметь наибольшую эффективность в летнее время года и, конечно же, в солнечную погоду. В наших широтах летом отапливать жилые помещения нет необходимости, поэтому теплогенератор можно вообще отключить. А так как лето у нас довольно жаркое и мы уже с трудом представляем свой быт без кондиционера, то тепловой насос предполагается включить на режим охлаждения. Естественно трубопровод, идущий от теплового насоса к бойлеру, будет перекрыт. Таким образом решать задачу горячего водоснабжения предполагается только с помощью гелиосистемы. И лишь в случае, если гелиосистема не справляется с этой задачей, использовать теплогенератор.

Как видим, схема довольно сложная и дорогостоящая. Общие приблизительные затраты в зависимости от выбранной схемы приведены ниже.

Затраты для вертикального коллектора:

  • Тепловой насос 6000 €;
  • Буровые работы 6000 €;
  • Эксплуатационные расходы (электричество): около 400 € в год.

Для горизонтального коллектора:

  • Тепловой насос 6000 €;
  • Буровые работы 3000 €;
  • Эксплуатационные расходы (электричество): около 450 евро в год.

Из крупных затрат потребуются расходы на закупку труб и на оплату труда рабочих.

Установка плоского солнечного коллектора (например, Vitosol 100-F и водонагревателя 300 л) обойдется в 3200 €.

Поэтому давайте, пойдем от простого к сложному. Сначала соберем простую схему отопления дома на основе теплогенератора, отладим ее, и постепенно будем добавлять в неё новые элементы, позволяющие увеличивать КПД установки.

Соберем систему отопления по схеме:

Схема теплоснабжения дома с использованием теплогенератора

1 – теплогенератор; 2 – бойлер косвенного нагрева; 3 – система отопления «теплый пол»; 4 – контур подачи горячей воды.

В итоге мы получили простейшую схему теплоснабжения дома, Я поделился своими мыслями для того, что бы побудить инициативных людей к развитию альтернативных источников энергии. Если у кого-то возникнут идеи или возражения по поводу написанного выше, давайте делиться мыслями, давайте накапливать знания и опыт в данном вопросе, и мы сбережем нашу экологию и сделаем жизнь немножко лучше.

Как видим здесь основной и единственный элемент, нагревающий теплоноситель, - это теплогенератор. Хотя в схеме и предусмотрен лишь один источник нагрева, она предусматривает возможность дальнейшего добавления дополнительных нагревательных устройств. Для этого предполагается использование бойлера косвенного нагрева с возможностью добавления или извлечения теплообменников.

Использование радиаторов отопления, имеющихся в схеме, изображенной на рисунке на один выше, не предполагается. Как известно система «теплый пол» более эффективно справляется с задачей обогрева помещений и позволяет экономить затрачиваемую энергию.

Отопление дома


В данной статье описаны варианты отопления дома и горячего водоснабжения с помощью теплового насоса, солнечного коллектора и кавитационного теплогенератора.

Использование альтернативных источников получения энергии сегодня представляется первоочередной задачей. Превращение энергии ветра, воды и солнца способно существенно снизить уровень загрязнения окружающей среды и сэкономить финансовые средства, необходимые для реализации технологичных способов получения энергии. В этом плане очень перспективным выглядит использованием так называемых теплонасосов. Тепловой насос - это устройство, способное переносить энергию тепла из окружающей среды внутрь помещения. Метод расчета теплового насоса, необходимые формулы и коэффициенты представлены ниже.

Источники тепловой энергии

Источниками энергии для тепловых насосов могут выступать солнечный свет, тепло воздуха, воды и грунта. В основе процесса лежит физический процесс, благодаря которому некоторые вещества (хладогенты) способны закипать при низких температурах. При таких условиях коэффициент производительности тепловых насосов может достигать 3 и даже 5 единиц. Это означает, что, затратив 100 Вт электроэнергии на работу насоса, можно получить 0,3-0,5 кВт.

Таким образом, геотермальный насос способен полностью отопить дом, однако при условии, что температура уличной среды не будет ниже температуры расчетного уровня. Как рассчитать тепловой насос?

Техника расчета мощности теплового насоса

С этой целью можно использовать специальный онлайн калькулятор расчета теплового насоса либо выполнить расчеты вручную. Прежде, чем определить необходимую для отопления дома мощность насоса вручную, необходимо определить тепловой баланс дома. Вне зависимости от того, для дома какой площади производится расчет (расчет теплового насоса на 300м2 или на 100м2), используется одна и та ж формула:

  • R - это тепловые потери/мощность дома (ккал/час);
  • V - объем дома (длина*ширина*высота), м3;
  • Т - самый высокий перепад между температурами снаружи дома и внутри в холодное время года, С;
  • k - это усредненный коэффициент теплопроводности здания: k=3(4) - дом из досок; k=2(3) - дом из однослойного кирпича; k=1(2) - кирпичный дом в два слоя; k=0,6(1) - тщательно утепленное здание.

Типовой расчет теплового насоса предполагает, что для того, чтобы перевести полученные значения из ккал/час в кВт/час, необходимо разделить ее на 860.

Пример расчета мощности насоса

Расчет теплового насоса для отопления дома на конкретном примере. Предположим, что необходимо обогреть здание площадью 100 м.кв.

Чтобы получить его объем (V), необходимо умножить его высоту на длину и ширину:

  • V=10х10х2,5=250 м3.

Чтобы узнать T, необходимо получить разницу температур. Для этого из минимальных внутренних температур вычитаем минимальные наружные:

  • Т=20-(-30)=50°С.

Теплопотери здания примем равными k=1, тогда тепловые потери дома будут рассчитаны следующим образом:

  • R=1*250*50=12500 ккал.

Программа расчета теплового насоса предполагает, что расход домом тепловой энергии должен быть переведен в кВт. Переводим ккал/час в кВт:

  • 12500 ккал/час / 860 = 14,53 кВт.

Таким образом, для отопления дома из двухслойного кирпича площадью 100 м.кв., необходим тепловой насос на 14,5 кВт. Если необходимо произвести расчет теплового насоса на 300м2, то в формулах производится соответствующая подстановка. В данном расчете учтены потребности в теплой воде, необходимой для отопления. Для определения подходящего теплового насоса потребуется таблица расчета теплового насоса, демонстрирующая технические характеристики и производительность той или иной модели.

Использование низкопотенциального тепла окружающей среды для подогрева воды и отопления становится экономически выгодным при длительном использовании системы. Преградой широкому распространению подобных устройств является высокая начальная стоимость оборудования и его установки. Поэтому всегда актуален полный или частичный монтаж теплового насоса своими руками, позволяющий сэкономить значительные средства.

Рис. 1 Тепловой насос вода-вода в доме

При создании тепловых насосов для отопления используется природное низкопотенциальное тепло воздушных масс, почвы и воды. Водяные виды поглощают тепловую энергию из скважин, колодцев, прудов и других открытых водоемов. Тепловой насос работает подобно холодильнику, который забирает тепло из холодильной камеры и выводит его наружу через внешний радиатор.

При монтаже первичный теплообменник с циркулирующим теплоносителем помещают в емкость с водой, из которой забирается тепло. Вода всасывается водяной помпой, проходит по системе труб и далее поступает в испаритель — в устройстве при нагреве жидкости происходит ее испарение. В испарителе теплоноситель передает тепло фреону, для которого небольшая положительная температура 6 — 8 С является точкой кипения, и газообразный хладагент поступает в компрессор.


Рис.2.Схема теплового насоса вода-вода

Там происходит его сжатие, приводящее к повышению температуры газа, и дальнейшая подача в конденсатор. В конденсаторе тепловая энергия от газа с температурой 40 — 70 С передается воде в системе отопления, охлажденный газ конденсируется и попадает в редукционный клапан (дроссель). Его давление понижается — это приводит к большему охлаждению газа до жидкообразного состояния, в котором он снова подается в испаритель. Система работает в круговом замкнутом циклическом режиме.

Расчет теплового насоса

Для конструкции системы своими руками в первую очередь необходимо выполнить расчет с учетом потребностей в тепловой энергии (насосы могут дополнительно использоваться для обеспечения горячего водоснабжения дома) и возможных потерь. Алгоритм расчета состоит из следующих операций.

  1. Вычисляется площадь отапливаемого помещения.
  2. Основываясь на полученных значениях определяется общее количество энергии, необходимой для отопления исходя из расчета 70 — 100 ватт на квадратный метр. Параметр зависит от высоты потолков, материала изготовления и степени теплопроводности дома.
  3. При обеспечении горячего водоснабжения полученное значение увеличивают на 15 — 20 %.
  4. Исходя из полученной мощности выбирается компрессор, производится расчет и проектирование основных узлов системы: трубопроводной магистрали, испарителя, конденсатора, электрической помпы и других узлов.

Комплектующие для системы отопления с тепловым насосом при самостоятельном изготовлении

Обычному домовладельцу довольно сложно конкурировать с промышленными тепловыми насосами отечественного и зарубежного производителя, тем не менее его монтаж и изготовление отдельных узлов не являются невыполнимыми работами. Основной задачей при устройстве теплового насоса остается правильность расчетов, ведь при ошибке система может иметь низкий КПД и стать неэффективной.

Компрессор

Для монтажа понадобится новый или б.у. компрессор в рабочем состоянии с невыработанным ресурсом подходящей мощности. Обычная мощность компрессора должна составлять 20 — 30% от расчетной, можно использовать стандартные заводские агрегаты для холодильников или кондиционеров спирального принципа действия, обладающие более высоким КПД по сравнению с поршневыми устройствами.

Испаритель и конденсатор

Для охлаждения и нагрева жидкостей их обычно пропускают через медные трубы, помещенные в емкость с теплообменником. Для увеличения площади охлаждения медная труба располагается в виде спирали, необходимая длина рассчитывается по формуле вычисления площади с делением на сечение. Объем теплообменного бака рассчитывается исходя из реализации эффективного теплообмена, обычное среднее значение — около 120 л. Для теплового насоса рационально использовать трубы для кондиционеров, которые изначально имеют спиральную форму и реализуются в бухтах.


Рис. З Медная труба и бак для теплообменника

Данный способ конструкции теплообменников многие изготовители тепловых насосов своими руками заменили на более компактный, используя теплообмен по принципу «труба в трубе». Стандартный диаметр пластиковой трубы для испарителя — 32 мм., в нее помещается медная труба диаметром 19 мм., испаритель термоизолируется, общая длина теплообменника около 10 — 12 м. Для конденсатора можно использовать 25 мм. металлопластиковую трубу и 12,7 мм. медную.


Рис 4. Сборка и внешний вид теплообменника из медных и пластиковых труб

Для увеличения площади и эффективности работы теплообменника некоторые умельцы скручивают косу из нескольких медных труб малого диаметра, перекладывают их тонкой проволокой и помещают конструкцию в пластик. Это позволяет получить на 10-метровом отрезке площадь теплообмена около 1 кубического метра.

Терморегулирующий вентиль

Правильно подобранное устройство регулирует степень заполнения испарителя и в большой степени отвечает за производительность всей системы. К примеру, если поступление хладагента слишком велико, он не успеет полностью испариться, и в компрессор будут попадать капли жидкости, приводящие к нарушению его работы и понижению температуры газа на выходе. Слишком малое количество фреона в испарителе после увеличения температуры в компрессоре будет недостаточно для прогрева необходимого объема воды.


Рис. 5 Основное оборудование для теплонасоса

Датчики

Для удобства пользования, контроля работы, обнаружения неисправностей и настройки системы необходимо наличие встроенных температурных датчиков. Информация важна на всех этапах функционирования системы, только с ее помощью по формулам можно установить важнейший параметр смонтированного оборудования для водяных тепловых насосов — показатель эффективности СОР.

Насосное оборудование

При работе тепловых насосов забор и подача воды из скважины, колодца или открытого водоема происходит при помощи водяных помп. Могут использоваться погружные или поверхностные виды, обычно их мощность невелика, для подачи воды достаточно 100 — 200 Вт. Для контроля работы, защиты насосов и системы дополнительно монтируются фильтры, манометр, водяные счетчики и простейшая автоматика.


Рис. 6 Внешний вид собранного своими руками теплонасоса

Сборка теплового насосного оборудования своими руками не представляет больших трудностей при умении обращаться со специальным инструментом для сварки и пайки меди. Выполненная работа поможет сэкономить значительные средства – затраты на комплектующие составят около 600 у. е., покупка промышленного оборудования обойдется в 10 раз дороже (около 6000 у. е.). Собранная своими руками конструкция при правильном расчете и настройке имеет эффективность (СОР) около 4, что соответствует промышленным образцам.