Эффект зеебека применение. Устройство для автономного электроснабжения на основе элементов пельтье при реализации эффекта зеебека. Эффект Пельтье — обратный эффекту Зеебека

История

Описание

Как уже отмечалось, эффект Зеебека состоит в том, что в замкнутой цепи, состоящей из разнородных проводников, возникает ЭДС (термоэдс), если места контактов поддерживают при разных температурах. Цепь, котороя сотоит только из двух различных проводников называется термоэлементом или .

Величина возникающей термоэдс зависит только от материала проводников и температур горячего (T 1 ) и холодного (T 2 ) контактов.

В небольшом интервале температур термоэдс E можно считать пропорциональной разности температур:

E = α 12 (T 2 − T 1) , где α 12 - термоэлектрическая способность пары (или коэффициент термоэдс)

В простейщем случае коэффициент термоэдс определяется только материалами проводников, однако строго говоря, он зависит и от темературы и в некоторых случаях с изменением температуры α 12 меняет знак.

Более корректное выражение для термоэдс:

E = \int_{T_1}^{T_2} \alpha_{12}(T)dT

Объяснение эффекта

Воникновение эффекта Зеебека вызвано несколькими составляющими.

Различная зависимость средней энергии электронов от температуры в различных веществах

Если вдоль проводника существует градиент температур, то на горячем конце приобретают более высокие энергии и скорости, чем на холодном; в в дополнение к этому концентрация электронов проводимости растет с температурой. В результате возникает поток электронов от горячего конца к холодному и на холодном конце накапливается отрицательный , а на горячем остаётся нескомпенсированный положительный заряд. Процесс накопления заряда продолжается до тех пор, пока возникшая разность потенциалов не вызовет поток электронов в обратном направлении, равный первичному, благодаря чему установится равновесие.

ЭДС, возникновение которой описывается данным механизмом, называется объёмной ЭДС .

Различная зависимость от температуры контактной разности потенциалов

Контактная разность потенциалов вызвана отличием у контактирующих различных проводников. При создании контакта уровни Ферми становятся одинаковыми, и возникает контактная разность потенциалов, равная

U = \frac{F_2-F_1}{e} , где F - энергия Ферми, e - .

На контакте тем самым существует электрическое поле, локализованное в тонком приконтактном слое. Если составить замкнутую цепь из двух металлов, то U возникает на обоих контактах. Электрическое поле будет направлено одинаковым образом в обоих контактах - от большего F к меньшему. Это значит, что если совершить обход по замкнутому контуру, то в одном контакте обход будет происходить по полю, а в другом - против поля. Циркуляция вектора Е тем самым будет равна нулю.

Если температура одного из контактов изменится на dT, то, поскольку энергия Ферми зависит от температуры, U также изменится. Но если изменилась внутренняя контактная разность потенциалов, то изменилось электрическое поле в одном из контактов, и поэтому циркуляция вектора Е будет отлична от нуля, то есть появляется ЭДС в замкнутой цепи.

Данная ЭДС называется контактной термоэдс .

Если оба контакта термоэлемента находятся при одной и той же температуре, то и контактная, и объёмная термоэдс исчезают.

Фононное увлечение

Если в твёрдом теле существует градиент температуры, то число , движущихся от горячего конца к холодному, будет больше, чем в обратном направлении. В результате столкновений с электронами фононы могут увлекать за собой последние и на холодном конце образца будет накапливаться отрицательный заряд (на горячем - положительный) до тех пор, пока возникшая разность потенциалов не уравновесит эффект увлечения.

Эта разность потенциалов и представляет собой 3-ю составляющую термоэдс, которая при низких температурах может быть в десятки и сотни раз больше рассмотренных выше. В магнетиках наблюдается дополнительная составляющая термоэдс, обусловленная эффектом увлечения электронов .

Термоэлектрические явления представляют собой отдельную тему в физике, в которой рассматривают, как температура может порождать электричество, а последнее вести к изменению температуры. Одним из первых открытых термоэлектрических явлений стал эффект Зеебека.

Предпосылки открытия эффекта

В 1797 году итальянский физик Алессандро Вольта, проводя исследования в области электричества, открыл одно из удивительных явлений: он обнаружил, что при контакте двух твердых материалов в области контакта появляется разность потенциалов. Она получила название контактной разности. Физически этот факт означает, что зона соприкосновения разнородных материалов обладает электродвижущей силой (ЭДС), способной привести к появлению тока в замкнутой цепи. Если теперь соединить в одну цепь два материала (сформировать два контакта между ними), то на каждом из них появится указанная ЭДС, которая будет одинакова по модулю, но противоположна по знаку. Последнее объясняет, почему не возникает никакого тока.

Причиной появления ЭДС является разный уровень Ферми (энергии валентных состояний электронов) в разных материалах. При соприкосновении последних уровень Ферми выравнивается (в одном материале понижается, в другом - повышается). Этот процесс происходит за счет перехода электронов через контакт, что и приводит к появлению ЭДС.

Сразу следует отметить, что величина ЭДС является незначительной (порядка нескольких десятых вольта).

Открытие Томаса Зеебека

Томас Зеебек (немецкий физик) в 1821 году, то есть спустя 24 года после обнаружения Вольтом контактной разности потенциалов, провел следующий опыт. Он соединил пластину висмута и меди, а рядом с ними расположил магнитную стрелку. В этом случае, как выше было сказано, никакого тока не возникало. Но стоило ученому поднести пламя горелки к одному из контактов двух металлов, как магнитная стрелка начала поворачиваться.

Теперь мы знаем, что причиной ее поворота стала сила Ампера, создаваемая проводником с током, но на то время Зеебек этого не знал, поэтому он ошибочно предположил, что возникает индуцированная намагниченность металлов в результате разницы температуры.

Правильное объяснения этому явлению было дано несколько лет позже датским физиком Хансом Эрстедом, который указал, что речь идет именно о термоэлектрическом процессе, и по замкнутой цепи идет ток. Тем не менее открытый Томасом Зеебеком термоэлектрический эффект в настоящее время носит его фамилию.

Физика происходящих процессов

Еще раз для закрепления материала: суть эффекта Зеебека заключается в индуцировании электрического тока в результате поддержания различной температуры двух контактов разных материалов, которые образуют замкнутую цепь.

Чтобы понять, что происходит в указанной системе, и почему в ней начинает бежать ток, следует познакомиться с тремя явлениями:

  1. О первом уже было упомянуто - это возбуждение ЭДС в области контакта из-за выравнивания уровней Ферми. Энергия этого уровня в материалах изменяется при повышении или понижении температуры. Последний факт приведет к появлению тока, если замкнуть два контакта в цепь (условия равновесия в зоне соприкосновения металлов при разных температурах будут разными).
  2. Процесс перемещения носителей заряда из горячих областей в холодные. Этот эффект можно понять, если вспомнить, что электроны в металлах и электроны и дырки в полупроводниках в первом приближении можно считать идеальным газом. Как известно, последний при нагревании в замкнутом объеме увеличивает давление. Иными словами, в зоне контакта, где температура выше, "давление" электронного (дырочного) газа тоже выше, поэтому носители заряда стремятся уйти в более холодные области материала, то есть к другому контакту.
  3. Наконец, еще одно явление, которое приводит к появлению тока в эффекте Зеебека, это взаимодействие фононов (решеточных колебаний) с носителями заряда. Ситуация выглядит таким образом, будто фонон, двигаясь от горячего спая к холодному, "ударяет" об электрон (дырку) и сообщает ему дополнительную энергию.

Отмеченные три процесса в итоге определяют возникновение тока в описанной системе.

Как описывают это термоэлектрическое явление?

Очень просто, для этого вводят некий параметр S, который получил название коэффициента Зеебека. Параметр показывает, ЭДС величины индуцируется, если поддерживается разность температур контактов равная 1 Кельвину (градусу Цельсия). То есть можно записать:

Здесь ΔV - ЭДС цепи (напряжение), ΔT - разность температур горячего и холодного спаев (зон контакта). Эта формула является лишь приближенно верной, поскольку S в общем случае зависит от температуры.

Значения коэффициента Зеебека зависят от природы материалов, вступивших в контакт. Тем не менее однозначно можно сказать, что для металлических материалов эти значения равны единицам и десяткам мкВ/К, в то время как для полупроводников они составляют сотни мкВ/К, то есть полупроводники обладают на порядок большей термоэлектрической силой, чем металлы. Причиной этого факта является более сильная зависимость характеристик полупроводников от температуры (проводимость, концентрация носителей заряда).

КПД процесса

Удивительный факт перевода теплоты в электричество открывает большие возможности для применения этого явления. Тем не менее для его технологического использования важна не только сама идея, но и количественные характеристики. Во-первых, как было показано, возникающая ЭДС является достаточно маленькой. Эту проблему можно обойти, если использовать последовательное соединение большого числа проводников (что и делается в ячейке Пельтье, речь о которой пойдет ниже).

Во-вторых, это вопрос эффективности генерации термоэлектричества. И этот вопрос остается открытым по сей день. КПД эффекта Зеебека является чрезвычайно низким (порядка 10 %). То есть из всего затраченного тепла лишь одну десятую его можно будет использовать для совершения полезной работы. Многие лаборатории во всем мире стараются поднять этот КПД, что можно сделать, разработав материалы нового поколения, например, с помощью нанотехнологий.

Использование эффекта, открытого Зеебеком

Несмотря на низкий КПД, он все же находит свое применение. Ниже перечислим основные из областей:

  • Термопара. Эффект Зеебека с успехом используют для измерения температур разных объектов. По сути, система из двух контактов - это и есть термопара. Если известен ее коэффициент S и температура одного из концов, то, измеряя напряжение, которое возникает в цепи, можно вычислить температуру другого конца. Термопары также применяют для измерения плотности лучистой (электромагнитной) энергии.
  • Генерация электричества на космических зондах. Запускаемые человеком зонды для исследования нашей Солнечной системы или космоса за ее пределами используют эффект Зеебека для питания электроники, находящейся на их борту. Осуществляется это благодаря радиационному термоэлектрическому генератору.
  • Применение эффекта Зеебека в современных автомобилях. Компании BMW и Volkswagen заявили о появлении в их автомобилях термоэлектрических генераторов, которые будут использовать тепло газов, выбрасываемых из выхлопной трубы.

Другие термоэлектрические эффекты

Существуют три термоэлектрических эффекта: Зеебека, Пельтье, Томсона. Суть первого уже была рассмотрена. Что касается эффекта Пельтье, то он заключается в нагревании одного контакта и охлаждении другого, если рассмотренную выше цепь подсоединить к внешнему источнику тока. То есть эффекты Зеебека и Пельтье являются противоположными.

Эффект Томсона имеет ту же природу, однако он рассматривается на одном материале. Его суть состоит в выделении или поглощении тепла проводником, по которому течет ток и концы которого поддерживаются при разных температурах.

Когда говорят о петентах на термо генераторные модули с эффектом Зеебека, то, конечно же, первым делом вспоминают про ячейку Пельтье. Она представляет собой компактное устройство (4x4x0,4 см), изготовленное из ряда последовательно соединенных проводников n- и p-типа. Изготовить ее можно своими руками. Эффекты Зеебека и Пельтье лежат в основе ее работы. Напряжения и токи, с которыми она работает, невелики (3-5 В и 0,5 A). Как было сказано выше, КПД ее работы очень маленький (≈10 %).

Применяется она для решения таких бытовых задач, как нагрев или охлаждение воды в кружке или подзарядка мобильного телефона.

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Юго-Западный государственный университет»

Факультет фундаментальной и прикладной информатики

Кафедра ЗИ и СС

полное название кафедры

Направление подготовки (специальность)

Средства связи с подвижными объектами, 210402

шифр и название направления (подготовки),специальности

о преддипломной практике

вид практики

на кафедре ЗИ и СС

название предприятия, организации, учреждения

студента (слушателя) 5 курса, группы ТК – 91

курса, группы

Калабина Дмитрия Аналольевича

фамилия, имя, отчество

Руководитель практики от М.П.

предприятия, организации,

учреждения

д.т.н. Мухин Иван Ефимович

должность, фамилия, и. о.

подпись, дата Оценка

Руководитель практики от

университета

Севрюков Александр Евгеньевич

должность, фамилия, и. о.

подпись, дата Оценка

Введение..................................................................................................................3

1 Термоэлектрические источники альтернативного электропитания................4

1.1 История открытия эффекта Зеебека............................................................4

1.2 Эффект Зеебека и его практическое применение........ ...............................8

1.3 Обзор современных применений термоэлектрического преобразования...................... ............................................................................11

1.4 Термоэлектрические генераторные сборки и устройства..........................................................................................................14

1.5 Термоэлектричество в быту.......................................................................16

1.6 Измерение тепловых потоков (тепломеры)..............................................18

1.6.1 Применение ТГМ для питания маломощных устройств при малых тепловых потоках (Energy Harvesting)............................................................18

1.7 Основные формулы и соотношения для определения параметров ТЭГ. .............................................................................................................................21

1.7.1 Основные параметры ТГМ................................................................23

1.7.2 Варианты исполнения ТГМ..............................................................26

1.8 Результаты испытаний на малых перепадах температур.........................................................................................................29

1.8.2Установка генераторных модулей.....................................................33

Введение

С увеличение сложности летательных аппаратов возникает необходимость объективного контроля в реальном масштабе времени до не скольких тысяч параметров в зависимости от сложности летательного аппарата. В связи с этим была разработана 101 поправка ИКАО от 14 ноября 2013года, которая определяет систему управления безопасности полетов в РФ для летательных аппаратов. Один из основных аспектов данного документа – это мониторинг технического состояния основных узлов и агрегатов летательных аппаратов.

Большое количество датчиков вызывает противоречие между ограничениями на массо-габаритные показатели и энергопотребление датчиков контроля состояния и между их техническими возможностями (чем больше датчиков, тем больше масса питающих и сигнальных проводов и потребляемая мощность от бортового генератора). Разрешением этого противоречия является применение принципиально нового подхода для организации питания датчиков и передачи информации на интегрированный пункт сбора информации датчиков. Для этого могут применяться в качестве источников питания элементы Зеебека, а для передачи информации на центральный пункт сбора – беспроводные системы связи.

Физической основой получения электрической мощности от элементов Зеебека является перепад температур между температурой внутри борта летательного аппарата и на его поверхности.

1 Термоэлектрические источники альтернативного электропитания

1.1 История открытия эффекта Зеебека

Днем рождения термоэлектричества можно считать 14 декабря 1820 г. В этот день на заседании Берлинской академии наук академик Томас Иоганн Зеебек впервые доложил о наблюдении им отклонения магнитной стрелки компаса вблизи замкнутой цепи из двух разнородных металлов, один спай которых нагревался (рисунок 1). Томас Зеебек называл этот эффект «термомагнетизмом». Позже, в 1822 г., в докладах Прусской академии наук был опубликован научный труд Томаса Зеебека «К вопросу о магнитной поляризации некоторых материалов и руд, возникающей в условиях разности температур».

Рисунок 1 – Иллюстрация к опыту, демонстрирующему эффект Зеебека

В своих опытах Томас Зеебек использовал контакт двух различных материалов (конструктивно выполненных в виде проволоки, пластин и/или стержней) из различных металлов, в частности из меди, висмута и сурьмы.

Суть явления, которое вошло впоследствии в физику под термином «эффект Зеебека» (рисунок 1), состояла в том, что при замыкании концов цепи, состоящей из двух разнородных металлических материалов, спаи которых (обозначенные на рисунке 1 m-p и n- o) находились при разных температурах, магнитная стрелка (а), помещенная вблизи такой цепи, поворачивалась так же, как и в присутствии магнитного материала. В результате Зеебек наблюдал возникновение магнитного поля, которое фиксировалось по отклонению магнитной стрелки. Угол и направление поворота магнитной стрелки зависели от значения разности температур на спаях цепи и сочетания материалов, из которых была составлена цепь.

Эффективность термоэлектрического преобразования теплового потока в электрическую энергию для наилучшего сочетания значений термоэлектродвижущей силы (термоЭДС) рядов пар материалов, составленных самим первооткрывателем этого эффекта Томасом Зеебеком, могла достичь 2–3%, что значительно превосходило КПД паровых машин того времени. Неизвестно, каким путем пошло бы развитие энергетики, будь больше внимания уделено термоэлектричеству в те годы.

Сегодня термоэлектричество наверстывает незаслуженное вековое забвение в энергетике. Это ускоренное движение началось совсем недавно - в 30‑е годы прошлого века благодаря работам А. Ф. Иоффе. Именно в эти годы была заложена основа развития современной термоэлектрической энергетики. Одним из первых выдающихся практических применений термоэлектрических полупроводниковых генераторов стал легендарный в тяжелые годы Великой Отечественной войны «Партизанский котелок» (ТГ-1, 1942 г.). Это устройство позволяло обеспечивать электрической энергией мощностью 2–4 Вт питание радиостанций партизанских отрядов и заменило труднодоступные и обладавшие в те времена малой емкостью гальванические батареи. Для получения электрической энергии было достаточно разности температур 250…300 °С над огнем костра при стабилизации температуры холодных спаев кипящей водой. Мировым термоэлектрическим сообществом общепризнан приоритет практического применения эффекта прямого преобразования тепловой энергии в электрическую за Советской Россией.

Для упрощения понимания используемых в последующих разделах обозначений и сокращений в таблице 1 приводится их единый перечень.

Таблица 1 – Список принятых обозначений и сокращений

Принятые обозначения

Расшифровка

Единица измерения

Коэффициент Зеебека (коэффициент термоЭДС)

Число пар термоэлектрических элементов в модуле

Высота термоэлектрического элемента

Сторона поперечного сечения элемента

T h

Температура горячего (hot) спая модуля

T с

Температура холодного (cold) спая модуля

Разность температур

R н

Электрическое сопротивление нагрузки

Q h

Энергия теплового потока, подаваемого на модуль (hot)

R h

Тепловое сопротивлеение между нагреваемой стороной ТГМ и источником теплоты с заданной температурой

Q c

Энергия теплового потока, отводимого с модуля (cold)

R c

Тепловое сопротивление между охлаждаемой стороной и окружающей средой

Напряжение на выходе модуля при Rн = R

Электрический ток через нагрузку при Rн = R

Электрическая мощность в нагрузке при Rн = R

Коэффициент полезного действия (эффективность) модуля

Отношение сопротивлений нагрузки и модуля

Внутреннее электрическое сопротивление модуля при рабочих температурах

R (22 °С)

Внутреннее электрическое сопротивление модуля в нормальных условиях

R t (22 °С)

Тепловое сопротивление модуля, измеренное при указанной температуре

Термоэлектрический генераторный модуль

Термоэлектрический генератор

Термоэлектрический элемент

1.2 Эффект Зеебека и его практическое применение

Как уже было отмечено, в основе термоэлектрической генерации лежит эффект Зеебека - термоэлектрический эффект, заключающийся в возникновении термоЭДС при нагреве контакта (спая) двух разнородных металлов или полупроводников (термопары). Напряжение термоЭДС E тэдс прямо пропорционально коэффициенту Зеебека α и разнице температур ΔT между горячей T h и холодной T c сторонами (спаями) термоэлектрического модуля (рисунок 2).

Рисунок 2 – Схематическое представление эффекта Зеебека на примере спая термоэлектрических элементов n- и p-типа

Представленная конструкция термопары состоит из разнородных полупроводниковых термоэлементов n- и p- типа, соединенных между собой на одной стороне, другие два свободных конца подключаются к нагрузке R н . Если температура места контакта отлична от температуры свободных концов, то по такой цепи пойдет ток, а на нагрузке будет выделяться полезная мощность. Величину термоЭДС можно определить по формуле:

Для увеличения получаемых электрической мощности и напряжения термопары соединяют последовательно, при этом они образуют термобатарею, или термоэлектрический модуль, графическое изображение которого представлено на рисунках 3 и 4.

Рисунок 3 – Чертеж термоэлектрического генераторного модуля

Рисунок 4 – Термоэлектрический генераторный модуль в разрезе

Конструктивное исполнение стандартного генераторного модуля мало чем отличается от холодильных термоэлектрических модулей. Между двух керамических пластин смонтированы электрически последовательно, а по тепловому потоку - параллельно термоэлектрические элементы n- и p- типа. Модуль имеет ширину А, длину В и высоту Н (рисунок 3). Как правило, модуль поставляется с напаянными проводами.

1.3 Обзор современных применений термоэлектрического преобразования

Развитие современной техники и технологий неразрывно связано с поиском новых источников энергии, в первую очередь - электрической. Основное требование - увеличить объем ее выработки, но в последнее время на передний план выходят дополнительные условия: энергия должна вырабатываться экологически чистым путем, должна быть возобновляемая и никак не связана с углеродом. Сегодня усилия многих ученых направлены на развитие «зеленой» энергетики, в которой особенно остро нуждаются Европа и США. Термоэлектрическая генерация является одним из перспективных, а в некоторых случаях единственно доступным способом прямого преобразования тепловой энергии в электрическую. В таком преобразовании отсутствует промежуточное звено, как, например, в работе тепловой или атомной электростанции, где тепловая энергия преобразуется в механическую, а затем механическая энергия преобразуется в электрическую.

За последние десятилетия в разных промышленно развитых странах были разработаны, испытаны и поставлены на серийное производство термоэлектрические генераторы (ТЭГ) мощностью от нескольких микроватт до десятков киловатт. Большинство ТЭГ предназначены для так называемой «малой энергетики». Они обладают такими уникальными качествами, как полная автономность, высокая надежность, простота эксплуатации, бесшумность и долговечность. ТЭГ используются для энергоснабжения объектов, удаленных от линий электропередачи, а также при целом ряде условий, где они являются единственно возможным источником электрической энергии.

Среди преимуществ, определяющих при выборе среди прочих приоритет термоэлектрического преобразования, во многих приложениях - это отсутствие движущихся частей и, как одно из следствий, отсутствие вибраций, а также необходимости применения жидкостей и/или газов под высоким давлением. (Преобразование происходит в самом термоэлектрическом веществе.) Работоспособность не зависит от пространственного положения и наличия гравитации.

ТЭГ можно применять при больших и малых перепадах температур. Последнее становится наиболее актуальным, если учесть, что до 90% сбрасываемой (отходящей) тепловой энергии выделяется на промышленных объектах и оборудовании при температуре поверхностей до 300 °С (рисунок 5).

Рисунок 5 – Распределение температур поверхностей промышленных агрегатов

Термоэлектрическое преобразование универсально, оно допускает использование практически любых источников теплового потока, в том числе при малых перепадах температур, при которых применение иных способов преобразования невозможно. Совсем недавно практическое применение получили устройства, утилизирующие энергию тепловых потоков при перепаде температур менее 10 К.

До настоящего времени существенным ограничением преимуществ термоэлектрического преобразования остается относительно низкий коэффициент эффективности преобразования теплового потока в электрическую энергию - от 3 до 8%. Однако в ситуации, когда для относительно небольших нагрузок невозможно или экономически нецелесообразно подвести обычные линии электропередачи, ТЭГ становится незаменимым. Сферы таких применений крайне разнообразны: от энергообеспечения космических аппаратов, находящихся на удаленных от Солнца орбитах, а также питания оборудования газои нефтепроводов, морских навигационных систем и до бытовых генераторных устройств, например, в составе дровяной топочноварочной печи, печи для сауны, камина и отопительного котла. Приведем еще несколько примеров практического применения ТЭГ:

а) использование отводимого от двигателей (автомобильных, корабельных и др.) тепла;

б) автономные источники питания электроэнергии для обеспечения работоспособности котельных, установок по переработке отходов и др.;

в) источники питания для катодной защиты нефте- и газопроводов;

г) преобразование тепла природных источников (например, геотермальных вод) в электрическую энергию;

д) обеспечение питанием различных устройств телеметрии и автоматики на объектах, удаленных от линий электропередачи;

е) измерение тепловых потоков (тепломеры);

ж) обеспечение автономным питанием маломощных электронных устройств (беспроводные датчики) за счет накапливаемой энергии (Energy Harvesting), собираемой при наличии минимальных перепадов температур (менее 10 °С);

и) получение электрической энергии на солнечных концентраторах за счет разности температур горячего и охлажденного теплоносителя в контуре.

1.4 Термоэлектрические генераторные сборки и устройства

Автономные источники электрической энергии на основе термоэлектрических генераторных модулей нашли широкое применение в различных областях деятельности человека. Мощность, вырабатываемая такими генераторами, составляет от единиц милливатт до единиц киловатт и определяется в конечном итоге экономической целесообразностью выбора этого способа преобразования энергии. Источником тепловой энергии может быть любая энергия, получаемая при сжигании природного газа, дров, угля, пеллет и др.

Термоэлектрическая генераторная сборка в минимальной (упрощенной) конфигурации состоит из металлической теплораспределительной пластины со стороны источника тепла, термоэлектрического генераторного модуля и охлаждающего радиатора, отводящего тепло, проходящее через модуль в окружающую среду и создающего необходимый для работы ТГМ перепад температур (рисунок 8). Вся конструкция скрепляется вместе тем или иным способом, чаще всего с помощью резьбовых соединений. В одну сборку могут быть установлены несколько модулей. Энергия от нескольких сборок может складываться при соответствующем подключении. Благодаря своей простоте конструкция обладает высокой надежностью и долговечностью (срок службы может превышать 10 лет при правильной эксплуатации).

В настоящее время наиболее широкое применение нашли два типа термоэлектрических генераторов: ТЭГ, работающий от природного газа и предназначенный для промышленного применения в газо- и нефтедобывающих отраслях, и ТЭГ, работающий от горения дров и иных широкодоступных видов топлива и предназначенный для решения задач обеспечения энергией садоводов, охотников, строителей и подразделений МЧС при отсутствии штатного электричества.

В ТЭГ для газо- и нефтедобывающей промышленности применяют тепло от сжигания природного газа для его преобразования в электрическую энергию. Такие промышленные генераторы предназначены для питания аппаратуры дистанционного телеуправления, телеметрии, автоматики и систем беспроводной передачи данных. В настоящее время линейка выпускаемых компанией «Криотерм» генераторов обеспечивает возможность получения электрической мощности от 6 до 80 Вт с одного генератора.

1.5 Термоэлектричество в быту

Идея использования термоэлектрической генерации электрической энергии интересует многих инженеров. Первым применением ТЭГ в быту можно по праву считать генератор, разработанный и освоенный в серийном производстве в конце 1940‑х годов. Он был предназначен для питания лампового приемника «Родина» (вырабатываемая мощность - порядка 2 Вт) и работал от тепла керосиновой лампы. Сейчас компания «Криотерм» выпускает в промышленных масштабах широкий спектр термоэлектрических генераторных модулей, позволяющих получать электрическую мощность, достаточную для питания маломощных нагрузок в течение протапливания печи, камина или даже мангала. В таблице 2 приведен ряд современных бытовых применений ТЭГ.

Таблица 2 – Применение термоэлектричества в быту

Бытовой прибор

Дополнительные возможности

Печи для отапливания помещения

Освещение помещения безопасным напряжением 12 В; зарядка аккумуляторов бытовых приборов; обеспечение ускоренной циркуляции воздуха за счет применения вентиляторов; питание ЖК-телевизора и другой радиоаппаратуры; зарядка аккумулятора для использования энергии после окончания протопки

Независимое питание вентиляторов для циркуляции горячего воздуха по дому; питание автономной подсветки

Печи для саун

Питание вентиляторов для циркуляции горячего воздуха; питание освещения и маломощных приборов безопасным напряжением 12 В; зарядка аккумулятора для питания устройств после протопки

Мангалы, жаровни, барбекю

Питание подсветки; питание системы регулирования температуры жарки; питание моторчика вращения шампура

Душевые кабины

Питание автономной подсветки; питание встроенного радиоприемника

Отопительные котлы

Питание циркуляционного насоса; питание маломощных бытовых устройств

Солнечные концентраторы тепловой энергии

Получение электрической энергии для питания систем телеметрии, автоматики, циркуляции теплоносителя и др.

Одним из наиболее ярких примеров применения термоэлектрических генераторов в бытовой технике являются нашедшие в настоящее время широкое распространение термоэлектрические генераторы ТЭГ В25-12 компании «Криотерм», вырабатывающие 25 Вт электрической мощности при обеспечении температуры на нагреваемой поверхности от 300 до 400 °C. Генератор надежен и неприхотлив в эксплуатации. Два генератора, установленные на небольшую отопительную дровяную печь, обеспечивают зарядку встроенного аккумулятора при совместной работе со встроенным контроллером заряда и выдают суммарно 50 Вт электрической энергии в период горения дров.

1.6 Измерение тепловых потоков (тепломеры)

Термоэлектрические модули широко используются в качестве измерителей плотности теплового потока, для измерения и контроля тепловых режимов двигателей, различных приборов и механизмов, для определения тепловых потерь, коэффициента теплопроводности, для получения информации о характере тепловыделений биологических объектов, для дозиметрии, контроля и автоматизации технологических процессов. Принцип действия термоэлектрического модуля в качестве тепломера основан на широко известном методе вспомогательной стенки: на пути регистрируемого теплового потока располагается «стенка» - образец с известным значением коэффициента теплопроводности. В термоэлектрическом модуле роль стенки исполняют ветви полупроводникового вещества. При этом уникальное преимущество термоэлектрического модуля заключается в том, что не требуется никаких дополнительных средств для измерения перепада температур: он определяется непосредственно по напряжению, генерируемому термоэлектрическим модулем. Режим работы ТЭМ в качестве тепломера - это частный случай режима генерации (при бесконечном сопротивлении нагрузки).

Описание

Эффект Зеебека состоит в том, что в замкнутой цепи, состоящей из разнородных проводников, возникает термо-ЭДС, если места контактов поддерживают при разных температурах. Цепь, которая состоит только из двух различных проводников, называется термоэлементом или термопарой .

Величина возникающей термоэдс в первом приближении зависит только от материала проводников и температур горячего () и холодного () контактов.

В небольшом интервале температур термоэдс можно считать пропорциональной разности температур:

где - термоэлектрическая способность пары (или коэффициент термоэдс).

В простейшем случае коэффициент термоэдс определяется только материалами проводников, однако, строго говоря, он зависит и от температуры, и в некоторых случаях с изменением температуры меняет знак.

Более корректное выражение для термоэдс:

Величина термоэдс составляет милливольты при разности температур в 100 К и температуре холодного спая в 0 °С (например, пара медь-константан даёт 4,25 мВ, платина-платинородий - 0,643 мВ, нихром-никель - 4,1 мВ) .

Объяснение эффекта

Возникновение эффекта Зеебека вызвано несколькими составляющими.

Различная зависимость средней энергии электронов от температуры в различных веществах

Если вдоль проводника существует градиент температур, то электроны на горячем конце приобретают более высокие энергии и скорости, чем на холодном; в полупроводниках в дополнение к этому концентрация электронов проводимости растет с температурой. В результате возникает поток электронов от горячего конца к холодному и на холодном конце накапливается отрицательный заряд , а на горячем остаётся нескомпенсированный положительный заряд. Процесс накопления заряда продолжается до тех пор, пока возникшая разность потенциалов не вызовет поток электронов в обратном направлении, равный первичному, благодаря чему установится равновесие.

ЭДС, возникновение которой описывается данным механизмом, называется объёмной ЭДС .

Различная зависимость от температуры контактной разности потенциалов

Контактная разность потенциалов вызвана отличием энергий Ферми у контактирующих различных проводников. При создании контакта химические потенциалы электронов становятся одинаковыми, и возникает контактная разность потенциалов , равная

, где - энергия Ферми, - заряд электрона .

На контакте тем самым существует электрическое поле, локализованное в тонком приконтактном слое. Если составить замкнутую цепь из двух металлов, то U возникает на обоих контактах. Электрическое поле будет направлено одинаковым образом в обоих контактах - от большего F к меньшему. Это значит, что если совершить обход по замкнутому контуру, то в одном контакте обход будет происходить по полю, а в другом - против поля. Циркуляция вектора Е тем самым будет равна нулю.

Если температура одного из контактов изменится на dT, то, поскольку энергия Ферми зависит от температуры, U также изменится. Но если изменилась внутренняя контактная разность потенциалов, то изменилось электрическое поле в одном из контактов, и поэтому циркуляция вектора Е будет отлична от нуля, то есть появляется ЭДС в замкнутой цепи.

Данная ЭДС называется контактная ЭДС .

Если оба контакта термоэлемента находятся при одной и той же температуре, то и контактная, и объёмная термоэдс исчезают.

Фононное увлечение

Если в твёрдом теле существует градиент температуры, то число фононов , движущихся от горячего конца к холодному, будет больше, чем в обратном направлении. В результате столкновений с электронами фононы могут увлекать за собой последние и на холодном конце образца будет накапливаться отрицательный заряд (на горячем - положительный) до тех пор, пока возникшая разность потенциалов не уравновесит эффект увлечения.

Эта разность потенциалов и представляет собой 3-ю составляющую термоэдс, которая при низких температурах может быть в десятки и сотни раз больше рассмотренных выше. В магнетиках наблюдается дополнительная составляющая термоэдс, обусловленная эффектом увлечения электронов магнонами .

Применяется для создания термодатчиков (например в компьютерах). Такие датчики миниатюрны и очень точны.

Ссылки

Примечания

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Эффект Зеебека" в других словарях:

    - (термоэлектрический эффект), в ТЕРМОЭЛЕКТРИЧЕСТВЕ, образование ЭЛЕКТРОДВИЖУЩЕЙ СИЛЫ (ЭДС) в цепи, состоящей из двух различных металлов или полупроводников, соединенных в петлю, два контакта между которыми поддерживаются при разных температурах.… … Научно-технический энциклопедический словарь

    эффект Зеебека - термоэлектрический эффект — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы термоэлектрический эффект EN… … Справочник технического переводчика

    эффект Зеебека - термоэлектрический эффект Зеебека; эффект Зеебека Возникновение электродвижущей силы в электрической цепи, состоящей из последовательно соединенных разнородных проводников при различных температурах контактов. термоэлектрический эффект; эффект… … Политехнический терминологический толковый словарь

    эффект Зеебека - termoelektrinis efektas statusas T sritis chemija apibrėžtis Elektros srovės atsiradimas uždaroje grandinėje, sudarytoje iš skirtingų metalų pašildžius jų kontakto vietą. atitikmenys: angl. Seebeck effect; thermoelectric effect rus.… … Chemijos terminų aiškinamasis žodynas

    эффект Зеебека - Seebeck o reiškinys statusas T sritis automatika atitikmenys: angl. Seebeck effect vok. Seebeck Effekt, m rus. эффект Зеебека, m pranc. effet Seebeck, m ryšiai: sinonimas – Zėbeko reiškinys … Automatikos terminų žodynas

    эффект Зеебека - Zėbeko reiškinys statusas T sritis fizika atitikmenys: angl. Seebeck effect vok. Seebeck Effekt, m rus. эффект Зеебека, m pranc. effet de Seebeck, m … Fizikos terminų žodynas

    эффект Зеебека - Zėbeko efektas statusas T sritis Energetika apibrėžtis Reiškinys, kai uždaroje elektrinėje grandinėje, iš nuosekliai sujungtų dviejų laidininkų, kurių lietimosi vietų temperatūra nevienoda, susidaro termoelektrovara ir teka elektros srovė.… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    эффект Зеебека - явление возникновения электродвижущей силы в электрическом контуре, состоящем из разных проводников, контакты между которыми имеют разные температуры; открыт в 1821 г. немецким физиком Т. Зеебеком. Электродвижущая сила,… … Энциклопедический словарь по металлургии

    Эффект Зеебека - холод. техн. Возникновение электродвижущей силы за счет разности температур двух спаев различных металлов или сплавов … Универсальный дополнительный практический толковый словарь И. Мостицкого

    - (англ. Spin Seebeck effect) физический эффект, в котором градиент температуры вдоль ферромагнитного проводника создаёт ненулевой потенциал спинового тока, где электрохимические потенциалы для электронов с основным и неосновным… … Википедия

Введение

1. Первооткрыватель явления термоэлектричества

2. Общие сведения о возникновении электродвижущей силы

3. Понятие термоэлектрического эффекта Зеебека

4. Применение эффекта Зеебека

Заключение

Список использованной литературы

Введение

Возможно, нас ждут новые месторождения нефти и угля и таких мало разведанных районах, как Австралия, Сахара или Антарктика. Кроме того, интенсивно разрабатываются и осваиваются новые технологии добычи угля из тонких и глубоких пластов, а также нефти из морских месторождений.

Нет сомнения в том, что будут разработаны принципиально новые, более эффективные способы использования ископаемых видов топлива. Традиционный многоступенчатый процесс, когда топливо сжигают, чтобы получить водяной пар, который направляется на вращение турбины генератора, вырабатывающего электричество, сопряжен с огромными потерями энергии. Большей части этих потерь можно избежать, если научиться превращать тепло непосредственно в электричество. Первым возможность такого процесса обнаружил немецкий физик Т. Зеебек в далеком 1823 году. Плотно соединив провода двух разных металлов в замкнутую цепь и нагрев место стыка, он заметил, как дрогнула стрелка, находившегося рядом компаса. Это означало, что под действием тепла в цепи возникал электрический ток (термоэлектричество). Однако сам автор неверно истолковал результаты собственного опыта, и о его открытии надолго забыли.

Однако с появлением полупроводниковых материалов и технологий забытый эффект Зеебека снова привлек внимание ученых. И в результате были разработаны термоэлектрические устройства на основе полупроводниковых материалов. При нагревании одного конца полупроводника в нем появляется электрический потенциал: в полупроводнике р-типа на холодном конце возникает отрицательный заряд, а в n-электроде - положительный. Если два этих электрода соединить в форме U-образной конструкции с n-р-переходом в нижней части, то нагревание этого стыка приведет к тому, что на верхнем конце р-электрода будет накапливаться отрицательный заряд, а на верхнем конце n-злектрода - положительный.

В итоге между ними потечет электрический ток, причем этот процесс будет продолжаться до тех пор, пока поддерживается разность температур. (И наоборот, пропускание через термоэлемент электрического тока вызывает поглощение тепла и понижение температуры, поэтому его можно использовать в качестве холодильного устройства.)

Термоэлектрический элемент - очень компактный, не требующий ни дорогостоящего генератора, ни громоздкого парового двигателя - можно легко установить практически в любом месте и пользовать в качестве удобного источника энергии. Все, что ему требуется, - это внешний обогреватель, например керосинная горелка.

эффект термоэлектрический зеебек ток

1. Первооткрыватель явления термоэлектричества

Зеебек (Seebek) Томас Иоганн (9. IV.1770 - 10. XII.1831) - немецкий физик, член Берлинской АН (1814) Р. в Ревеле (теперь Таллин). Учился в Берлинском и Гёттингенском унтах, в последнем получил в 1802 степень доктора. Работал в Йене, в 20-х годах в Берлине.

Работы посвящены электричеству, магнетизму, оптике. Открыл в 1821 явление термоэлектричества (в паре "медь - висмут"), построил термопару и использовал ее для измерения температуры. Первый применил железные опилки для определения формы силовых линий магнитного поля. Изучал магнитное действие тока, хроматическую поляризацию и распределение тепла в призматическом спектре. Обнаружил поляризационные свойства турмалина (1813). Переоткрыл инфракрасные лучи, круговую поляризацию, намагничивание железа и стали вблизи проводника с током.

В 1821 году берлинский учёный член Берлинской Академии наук Зеебек (1770-1831) решил воспроизвести опыт Эрстеда по воздействию постоянного электрического тока на магнитную стрелку. Но источником тока была не гальваническая батарея, а сухой без какого-либо электролита контакт двух металлов. Зеебек установил, что магнитная стрелка реагировала только в тот момент, когда экспериментатор прикасался к месту контакта руками. Причём не играло никакой роли, были ли руки сухими или влажными. Эффект отсутствовал даже в том случае, когда контакт сжимался руками через влажную бумагу. Но при сжатии через стекло или металл стрелка отклонялась. Проведя многочисленные эксперименты, Зеебек убедился, что суть явления в тепле рук, которыми этот контакт сжимался. Поэтому этот эффект был назван термомагнитным.

Эти эксперименты были вскоре подтверждены Эрстедом и Фурье. Выяснилось, что элемент Зеебека не только создаёт магнитное поле, но и способен разлагать химические соединения. Этим он уподобляется химическому источнику тока. Поэтому это явление было названо термоэлектричеством.

Но сам первооткрыватель этого явления с таким толкованием не соглашался. Сам он занимался теорией земного магнетизма, а этот феномен он объяснял разностью температур между экватором и земными полюсами. В этих экспериментах учёный видел подтверждение своей точки зрения. Он считал, что именно токи, возникающие вследствие открытого им эффекта и порождают магнитное поле.

Надо отдать должное берлинскому профессору. Он сам, проведя множество экспериментов, накопил массу неопровержимого материала, который не только заставил его отказаться от своей гипотезы, но и предоставил науке много новых фундаментальных данных.

Эффект Зеебека - переход электрической энергии в тепловую и обратно - нашёл широкое применение в технике. На его основе работают термопреобразователи - термопары.

Большая часть всех температурных измерений приходится на долю термоэлектрических преобразователей, принцип действия, которых основан на явлении Зеебека.

В 1821 году немецкий ученый, уроженец г. Ревеля (ныне Таллин), Т.Й. Зеебек (1770-1831) обнаружил, что если спаи двух разнородных металлов, образующих замкнутую электрическую цепь, имеют неодинаковую температуру, то в цепи протекает электрический ток. Изменение знака у разности температур спаев сопровождается изменением направления тока.

Этот факт послужил основой для создания устройства, чувствительным элементом которого является термопара - два проводника из разнородных материалов, соединенных между собой на одном (рабочем) конце, другие два (свободные) конца проводников подключаются в измерительную цепь или непосредственно к измерительному прибору, причем температура свободных концов заранее известна. Термопара образует устройство (или его часть), использующее термоэлектрический эффект для измерения температуры. Под термоэлектрическим эффектом понимается генерирование термоэлектродвижущей силы (термоЭДС), возникающей из-за разности температур между двумя соединениями различных металлов и сплавов (рис.1), образующих часть одной и той же цепи.

Термо ЭДС термопары обусловлена тремя причинами. Первая заключается в зависимости уровня Ферми энергии электронов в проводнике от температуры, что приводит к неодинаковым скачкам потенциала при переходе из одного металла в другой в спаях термопары, находящихся при разных температурах. Во-вторых, при наличии градиента температуры электроны в области горячего конца проводника приобретают более высокие энергии и подвижность. Вдоль проводника возникнет градиент концентрации электронов с повышенными значениями энергии, что повлечет за собой диффузию более быстрых электронов к холодному концу, а более медленных к горячему. Но диффузионный поток быстрых электронов будет больше. Кроме того, при наличии градиента температуры вдоль проводника возникает дрейф фотонов - квантов энергии колебаний кристаллической решетки. Сталкиваясь с электронами, фотоны сообщают им направленное движение от более нагретого конца проводника к более холодному. Последние два процесса приводят к избытку электронов вблизи холодного конца и недостатку их вблизи горячего конца. В результате внутри проводника возникает электрическое поле, направленное навстречу градиенту температуры. Таким образом, термо ЭДСтермопары возникает только из-за наличия продольного градиента температуры в проводниках, составляющих пару.

2. Общие сведения о возникновении электродвижущей силы

В металлах полупроводниках процессы переноса зарядов (электрический ток) и энергии взаимосвязаны, так как осуществляются посредством перемещения подвижных носителей тока - электронов проводимости и дырок. Эта взаимосвязь обуславливает ряд явлений (Зеебека, Пельтье, и Томсона), которые называют термоэлектрическими явлениями.

Эффект Зеебека состоит в том, что в замкнутой электрической цепи из разнородных металлов возникает термо э. д. с. если места контактов поддерживаются при разных темпера - турах. Эта ЭДС зависит только от температуры и от природы материалов, составляющих термоэлемент. Термо э. д. с. для пар металлов может достигать 50 мкВ/градус; в случае полупроводниковых материалов величина термо э д с выше (10 во 2-ой + 10 в 3-ей мкВ/градус).

Электротермический способ дефектоскопии, заключающийся в том, что контролируемую зону нагревают, пропуская через нее в течение определенного времени постоянный по величине электрический ток, измеряют при помощи термопары-датчика температуры ее нагрева и судят о наличии дефекта по отклонению этой температуры от температуры нагрева бездефектной зоны сварного соединения, отличающийся тем, что с целью контроля зоны сварного соединения двух разных металлов, например, контактных узлов радиодеталей, в качестве термопары-датчика используют термопару, образованную соединенными металлами.

Для проверки качества сварного шва снимают распределение термоэлектрического потенциала поперек шва. Пики и впадины на кривых распределения говорят о неоднородности шва, а их величина - о степени неоднородности. Быстро и наглядно.

Если в разрыв одной из ветвей термоэлемента включить последовательно любое число проводников любого состава, все спаи (контакты) которых поддерживаются при одной и той же температуре, то термо э. д. с. в такой системе будет равна термоэдс исходного элемента.

Термопара, содержащая защитный чехол, термоэлектроды с электрической изоляцией, рабочие концы, которых снабжены, снабжены токопроводящей перемычкой, образующей измерительный спай, отличающийся тем, что с целью увеличения срока службы термопары в условиях повышенной вибрации и больших скоростей нагрева, измерительный спай термопары выполнен в виде слоя порошкообразного металла,расположенного на дне защитного чехла.

При измерении физического состояния веществ, участвующих в контакте изменяется и величина термо э. д. с.

Способ распознавания систем с ограниченной и неограниченной взаимной растворимостью компонентов по температурной зависимости термо э. д. с., отличающейся тем, что с целью повышения надежности распознавания измеряют термо э. д. с. кон - такта двух исследуемых образцов Между металлом, сжатым всестороннем давлением, и тем же металлом, находящемся при нормальном давлении тоже возникает термо э. д. с.

Например, для железа при температуре 100 градусов С и давлении 12 кбар, термоэдс равна 12,8 мкВ. При насыщении металла или сплава в магнитном поле относительно того же вещества без магнитного поля возникает термоэдс порядка 09мкВ/градус

3. Понятие термоэлектрического эффекта Зеебека

Если прохождение тока в замкнутой цепи вызывает нагревание одних и охлаждение других спаев, то нагревание одних и охлаждение других контактов приводит к появлению тока в цепи (эффект Зеебека, или термоэлектрический эффект) в отсутствие внешнего источника.

Пусть температура Т 0 во всех точках однородного металлического стержня (рис.2) одинакова; значит, повсюду одинаковы концентрации, средние энергии и скорости свободных электронов.

Нагреем один конец стержня и будем его поддерживать при постоянной температуре Т>Т 0 . Противоположный же конец будем непрерывно охлаждать так, чтобы его температура Т 0 оставалась неизменной. Тогда в стержне установится градиент температуры, и через него будет идти постоянный поток тепла. Перенос тепла в металлах осуществляется в основном движением свободных электронов. При этом электроны, проходящие через сечение 1-1 из области с более высокой температурой, переносят с собой больше энергии, чем электроны, проходящие через то же сечение в противоположном направлении. Вследствие различия скоростей электронов, находящихся в областях с различными температурами, окажется различным и число электронов, проходящих через сечение 1 - 1 в противоположных направлениях. Таким образом, в равновесном состоянии наличие градиента температуры вдоль стержня создает постоянную разность потенциалов на его концах, величина которой пропорциональна градиенту температуры.

Если спаять в одном месте два разнородных металла 1 и2, и нагреть спай до некоторой температуры Т, превышающей температуру обоих концов Т 0 (рис.3, а), то из-за различного падения потенциала обоих металлов и их электронных концентраций потенциалы свободных концов будут различны, и между металлами возникнет разность потенциалов U. Если нагреть такой спай до другой температуры Т" (рис.3, б), то между свободными концами установится другое значение разности потенциалов U’.

Соединяя свободные концы одинаковых металлов (как показано на рис.3 пунктиром), мы видим, что в замкнутой цепи из двух разнородных металлов возникает электродвижущая сила

если между спаями поддерживается постоянный перепад температур . Эта величина называется термоэлектродвижущей силой (термоэдс) и создает в замкнутой цепи (рис.4) постоянный электрический ток.

Производная

характеризует возрастание термоэдс для данной пары металлов при нагревании одного из спаев на 1° и обычно весьма мала. Для пар железо - медь, железо - константан, широко применяемых в технике при измерении температур, е 1, 2 имеет порядок 50 мкв/град. Для высокотемпературной пары платина-платинородиевый сплав этот коэффициент примерно в 10 раз меньше.

Измеряя величину термоэдс, можно определить разность температур между спаями, помещенными в различные резервуары. Для таких практических применений подбирают термопары, у которых коэффициент е 1,2 в широком интервале температур остается практически постоянным. В этом случае э. д. с. прямо пропорциональна разности температур горячего и холодного спаев:

е 1,2 = const и .

Необходимо подчеркнуть принципиальную разницу между контактной разностью потенциалов и термоэлектрическими явлениями. Контактные потенциалы имеют сравнительно большую величину (порядка нескольких вольт) и характеризуют электрическое поле вне проводников между наружными поверхностями последних. Контактная разность потенциалов есть статический эффект, не исчезающий и при абсолютном нуле температуры. В противоположность этому термоэлектрические явления представляют собой чисто кинетические эффекты, наблюдаемые при наличии потоков тепла или заряда (т.е. тока). Возникающие при этом разности потенциалов по абсолютной величине малы (доли милливольта). При абсолютном нуле количество электронов n", обусловливающих эти эффекты, равно нулю и все термоэлектрические явления исчезают.

Постоянство е 1,2 и линейная зависимость соблюдаются далеко не всегда и не во всем интервале температур. Для ряда систем с повышением температуры горячего спая термоэдс изменяется не монотонно, сначала возрастает, а затем убывает и даже переходит через нуль (точка инверсии). Кроме того, величина термоэдс (и коэффициента Пелътье) чувствительна к внешним механическим воздействиям, искажающим структуру металла и энергетические уровни электронов. Поэтому применяемые в технике и для научных исследований термопары всегда нуждаются в тщательной индивидуальной градуировке.

В электрических схемах и приборах всегда имеются спаи или контакты различных по своему составу и обработке проводников. При колебаниях температуры окружающей среды в этих местах контактов возникают неконтролируемые блуждающие термоэдс. Вследствие малости этих термоэдс они обычно не сказываются на работе приборов, но при очень точных и тонких измерениях необходимо учитывать и предотвращать возможность подобных влияний.

С другой стороны, термоэдс имеет широкое полезное практическое применение, как простой электрический метод измерения температур. При подобных намерениях с помощью термопар или термоэлементов одни из спаев поддерживается при вполне определенной постоянной температуре T 0 (например, помещается в тающий лед) и измеряется идущий в замкнутой цепи термоток


с помощью гальванометра, как это изображено на рис.5.

В более грубых технических термопарах один из спаев имеет просто температуру окружающей среды. Для повышения чувствительности термоэлементов их соединяют последовательно в термобатарею (рис.6).

При прецизионных измерениях предпочтительнее измерять не термоток, а непосредственно термоэдс, компенсируя ее известной электродвижущей силой.

4. Применение эффекта Зеебека

Явление Зеебека не противоречит второму началу термодинамики, так как в данном случае внутренняя энергия преобразуется в электрическую, для чего используется два источника теплоты (два контакта). Следовательно, для поддержания постоянного тока в рассматриваемой цепи необходимо поддерживать постоянство разности температур контактов: к более нагретому контакту непрерывно подводить теплоту, а от холодного - непрерывно ее отводить.

Явление Зеебека используется для измерения температуры. Для этого применяются термоэлементы, или термопары - датчики температур, состоящие из двух соединенных между ним с междоузельными расстояниями в решетке металла. Число электронов, участвующих в диффузии через контактный слой, составляет примерно 2 % от общего числа электронов, находящихся на поверхности металла. Столь незначительное изменение концентрации электронов в контактном слое, с одной стороны, и малая по сравнению с длиной свободного пробега электрона его толщина - с другой, не могут привести к заметному изменению проводимости контактного слоя по сравнению с остальной частью металла. Следовательно, электрический ток через контакт двух металлов проходит так же легко, как и через сами металлы, т.е. контактный слой проводит электрический ток в обоих направлениях (1→2 и 2→1) одинаково не дает эффекта выпрямления, который всегда связан с односторонней проводимостью.

С помощью явления Зеебека, помимо температуры, можно определять и другие физические величины, измерение которых может быть сведено к измерению температур: силы переменного тока, потока лучистой энергии, давления газа и т.д.

Для увеличения чувствительности термоэлементы соединяют последовательно в термобатареи. При этом, все четные спаи поддерживаются при одной температуре, а все нечетные - при другой. Эдс такой батареи равна сумме термоэдс отдельных элементов.

Миниатюрные термобатареи (так называемые термостолбики) с успехом применяют для измерения интенсивности света (как видимого, так и невидимого). В соединении с чувствительным гальванометром они обладают огромной чувствительностью: обнаруживают, например, тепловое излучение человеческой руки.

Термобатарея представляет интерес и как генератор электрического тока. Однако использование металлических термоэлементов неэффективно, поэтому для преобразования тепловой энергии в электрическую используются полупроводниковые материалы.

Создание высокоэффективных термоэлектрических преобразователей энергии является одной из актуальных технических задач. Фундаментальные и прикладные исследования, направленные на её решение, ведутся как в университетских лабораториях, так и в исследовательских центрах фирм занимающихся производством электроники, автоматики и другой высокотехнологичной продукции. Работы ведутся в различных направлениях, начиная от исследования термоэлектрических свойств гетероструктур и заканчивая созданием термоэлектрических приборов, которые находят все более широкое применение в быту, на транспорте, в энергетике. Применение термоэлектрических преобразователей энергии связано с генерацией электрического тока, использованием в холодильниках, кондиционерах, регуляторах температуры, осушителях и т.п. В мире наблюдается непрерывный рост интереса к термоэлектрическим устройствам. Постоянно наращиваются объемы выпускаемых термоэлементов и приборов на их основе. Это обусловлено тем, что существуют направления, в которых преимущества термоэлектрических способов преобразования энергии являются неоспоримыми. В первую очередь - это электропитание автоматов, использующихся для исследования дальнего космоса, автономные устройства сейсмической разведки, обустройство катодной защиты нефте - и газопроводов. На мировом рынке постоянно растет спрос на термоэлектрические материалы и термоэлектрические преобразователи различного назначения.

В связи с этим в лаборатории термоэлектрического материаловедения проводятся экспериментальные и прикладные исследования в следующих направлениях:

Исследование закономерностей изменения магнитной восприимчивости термоэлектрических материалов на основе висмута, сурьмы и теллура в зависимости от количества и типа легирующей примеси с целью определения химического состава кристаллов с аномалиями в величине ряда физических величин, обусловленных интенсивным электрон-плазмонным взаимодействием.

Исследование зависимости величины коэффициентов электро - и теплопереноса в легированных кристаллах полупроводников.

Определение химического состава кристаллов, обладающих максимальной термоэлектрической эффективностью.

Создание опытных образцов термоэлектрических преобразователей энергии для широкого диапазона температур.

Определение оптимальных условий процесса выращивания кристаллов термоэлектрических материалов, на основе полуметаллов висмута, сурьмы и их сплавов методом зонной плавки.

Изучение влияния взаимодействия элементарных возбуждений электронной и ионной системы кристалла на величину термоэлектрической эффективности материала.

Определение факторов влияния на характеристики электронной системы кристалла, способствующих координации потоков тепловой и электрической энергии.


Заключение

Эффект Зеебека, как и другие термоэлектрические явления, имеет феноменологический характер.

Так как в электрических схемах и приборах всегда имеются спаи и контакты различных проводников, то при колебаниях температуры в местах контактов возникают термоэдс, которые необходимо учитывать при точных измерениях.

С другой стороны, термоэдс находит широкое практическое применение. Эффект Зеебека в металлах используется в термопарах для измерения температур. Что касается термоэлектрических генераторов, в которых тепловая энергия непосредственно преобразуется в электрическую, то в них используются полупроводниковые термоэлементы, обладающие гораздо большими термоэдс.

Список использованной литературы

1. Зисман Г.А. Курс общей физики. - М.: Наука, 1972, 366 с., ил.

2. Трофимова Т.И. Курс физики. - М.: Высшая школа, 1990. - 480с., ил.

И.В. Савельев Курс общей физики, т. II. Электричество и магнетизм. Волны. Оптика: Учебное пособие. - 2-е издание, переработанное (М., Наука, главная редакция физико-математической литературы, 1982) с.233-235.